Cho hai đa thức $P(x)=x^4-5 x^3+4 x-5$ và $Q(x)=-x^4+3 x^2+2 x+1$.
a) Hãy tìm tổng $P(x)+Q(x)$.
b) Tìm đa thức $R(x)$ sao cho $P(x)=R(x)+Q(x)$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
đổi nửa giờ = 30 phút = `1/2` giờ
quãng đường từ nhà đến trường là
`s=v*t=12*1/2=6(km)`
nếu đi với vận tốc đó thì hết
`t=s/v=6:10=0,6`(giờ)=`36`(phút)
\(2x=3y=4z\)
\(\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Ta có:
\(\dfrac{y}{4}=\dfrac{2y}{8}\)
\(\dfrac{z}{3}=\dfrac{3z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{6}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x+2y-3z}{6+8-9}=\dfrac{-10}{5}=-2\)
\(\Rightarrow x=-2\cdot6=-12\)
\(y=-2\cdot4=-8\)
\(z=-2\cdot3=-6\)
Vì tam giác ABC cân tại A, nên ta có AB = AC.
Với AK = AH và AB = AC, ta có tam giác AKH cân tại A.
Gọi M là trung điểm của KH, ta có AM song song với BC và AM = 1/2 BC.
Ta thấy rằng tam giác BOM và COM đều có cạnh ON (với N là trung điểm BC), BM = MC và góc BOM = 180° - góc COM.
Như vậy, tam giác BOC cân tại O vì OB = OC (cùng là đường trung bình trong tam giác đều BOC) và góc BOC = 2 × góc BOM = 2× (90° – 1/2 × góc MBC) = 180° – góc MBC = góc BOC (vì tam giác BOC cân tại O).
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
a) �(�)+�(�)P(x)+Q(x)
=(�4−5�3+4�−5)+(−�4+3�2+2�+1)=(x4−5x3+4x−5)+(−x4+3x2+2x+1)
=�4−5�3+4�−5−�4+3�2+2�+1=x4−5x3+4x−5−x4+3x2+2x+1
=(�4−�4)−5�3+3�2+(4�+2�)+(1−5)=(x4−x4)−5x3+3x2+(4x+2x)+(1−5)
=−5�3+3�2+6�−4=−5x3+3x2+6x−4
b) �(�)=�(�)−�(�)R(x)=P(x)−Q(x)
=(�4−5�3+4�−5)−(−�4+3�2+2�+1)=(x4−5x3+4x−5)−(−x4+3x2+2x+1)
=�4−5�3+4�−5+�4−3�2−2�−1=x4−5x3+4x−5+x4−3x2−2x−1
=(�4+�4)−5�3−3�2+(4�−2�)+(−1−5)=(x4+x4)−5x3−3x2+(4x−2x)+(−1−5)
=2�4−5�3−3�2+2�−6=2x4−5x3−3x2+2x−6