Cho hình thang ABCD (AB//CD)có CD=AD+BC. Gọi K là điểm thuộc đáy CD sao cho KD=AD. Chứng minh:
1) AK là phân giác của góc A.
2) KC=BC
3) BK là phân giác của góc B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(x^2+5x+6\right)\left(x^2-15x+56\right)-144\\ =\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)-144\\ =\left[\left(x+2\right)\left(x-7\right)\right]\left[\left(x+3\right)\left(x-8\right)\right]-144\\ =\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144\\ =\left(x^2-5x-19+5\right)\left(x^2-5x-19-5\right)-144\\ =\left(x^2-5x-19\right)^2-5^2-144\\ =\left(x^2-5x-19\right)^2-169\\ =\left(x^2-5x+19\right)^2-13^2\\ =\left(x^2-5x-19-13\right)\left(x^2-5x-19+13\right)\\ =\left(x^2-5x-32\right)\left(x^2-5x-6\right)\\ =\left(x^2-5x-32\right)\left(x+1\right)\left(x-6\right)\)
\(b.\left(x^2-11x+28\right)\left(x^2-7x+10\right)-72\\ =\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-2\right)-72\\ =\left[\left(x-4\right)\left(x-5\right)\right]\left[\left(x-7\right)\left(x-2\right)\right]-72\\ =\left(x^2-9x+20\right)\left(x^2-9x+14\right)-72\\ =\left(x^2-9x+17+3\right)\left(x^2-9x+17-3\right)-72\\ =\left(x^2-9x+17\right)^2-3^2-72\\ =\left(x^2-9x+17\right)^2-81\\ =\left(x^2-9x+17\right)^2-9^2\\ =\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)\\ =\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)
a: \(P=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}=\dfrac{3^{64}-1}{2}\)
b: \(Q=\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^{32}-1\right)\left(5^{32}+1\right)}{24}=\dfrac{5^{64}-1}{24}\)
a: Ta có: \(\widehat{bMB}=\widehat{NMC}\)(hai góc đối đỉnh)
mà \(\widehat{bMB}=50^0\)
nên \(\widehat{NMC}=50^0\)
Ta có: \(\widehat{MNC}+\widehat{aNC}=180^0\)(hai góc kề bù)
=>\(\widehat{MNC}+110^0=180^0\)
=>\(\widehat{MNC}=70^0\)
Xét ΔMNC có \(\widehat{NMC}+\widehat{MNC}+\widehat{C}=180^0\)
=>\(\widehat{C}+50^0+70^0=180^0\)
=>\(\widehat{C}=60^0\)
b: Ta có: \(\widehat{NMB}+\widehat{NMC}=180^0\)(hai góc kề bù)
=>\(\widehat{NMB}+50^0=180^0\)
=>\(\widehat{NMB}=130^0\)
Ta có: MN//AB
=>\(\widehat{CMN}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{CBA}=50^0\)
BN là phân giác của góc CBA
=>\(\widehat{NBM}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔNMB có \(\widehat{NMB}+\widehat{BNM}+\widehat{NBM}=180^0\)
=>\(\widehat{MNB}=180^0-130^0-25^0=25^0\)
c: BN là phân giác của góc CBA
=>\(\widehat{ABN}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{BAN}+60^0+50^0=180^0\)
=>\(\widehat{BAN}=70^0\)
Xét ΔBAN có \(\widehat{BAN}+\widehat{ABN}+\widehat{ANB}=180^0\)
=>\(\widehat{ANB}=180^0-75^0-25^0=85^0\)
Số đó là:
\(6,4:32\%=20\)
5/8 của số đó là:
\(20\times\dfrac{5}{8}=12,5\)
ĐS: ...
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)
mà BD+CD=BC=13cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)
=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
c: ΔCDE~ΔCAB
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
\(\widehat{C}\) chung
Do đó: ΔCDA~ΔCEB
=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)
=>\(DA\cdot CB=BE\cdot AC\)
d: ΔCDE~ΔCAB
=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)
Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{DEB}=\widehat{DAB}=45^0\)
Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)
nên ΔDEB vuông cân tại D
ΔBDE vuông cân tại D
=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)
Hiệu của hai số bằng 2/3 số bé
=>Số lớn=5/3 số bé
Tổng số phần bằng nhau là 5+3=8(phần)
SỐ lớn là 1888:8x5=1180
Số bé là 1880-1180=708
1: DA=DK
=>ΔDAK cân tại D
=>\(\widehat{DAK}=\widehat{DKA}\)
mà \(\widehat{DKA}=\widehat{KAB}\)(hai góc so le trong, AB//DK)
nên \(\widehat{DAK}=\widehat{BAK}\)
=>AK là phân giác của góc BAD
2: ta có: CD=CK+KD
CD=AD+BC
Do đó: CK+KD=AD+BC
mà DA=DK
nên CK=CB
3: CK=CB
=>ΔCBK cân tại C
=>\(\widehat{CKB}=\widehat{CBK}\)
mà \(\widehat{CKB}=\widehat{ABK}\)(hai góc so le trong, AB//CK)
nên \(\widehat{ABK}=\widehat{CBK}\)
=>BK là phân giác của góc ABC