1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤12) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:abc+bca+cababc+bca+cab3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥364) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất...
Đọc tiếp
1) Cho a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a,b,c là các số thực dương thoả: abc=1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">abc=1. Cmr:
aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1
2) Cho a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a,b,c là các số thực dương thoả mãn: a2+b2+c2=1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a2+b2+c2=1. Tìm giả trị nhỏ nhất của:
abc+bca+cab" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">abc+bca+cab
3) Cho a≥6" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a≥6. CMR: a2+6a−6≥36" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a2+6√a−√6≥36
4) Cho a,b,c,d" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">a,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤90" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">1≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất của: P=ab+3cd" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">P=ab+3cd
5) Cho các số thực dương x,a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">x,a,b,c thoả điều kiện: x2=a2+b2+c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">x2=a2+b2+c2.
CMR: ax+2a+bx+2b+c2+2c≤32+3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">ax+2a+bx+2b+c2+2c≤32+√3
6) Tìm giá trị lớn nhất và nhỏ nhất của hàm số:
y=2+2sin⁡(x+Π4)+21+sin⁡x+cos⁡x+sin⁡xcos⁡x" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">y=2+√2sin(x+Π4)+2√1+sinx+cosx+sinxcosx, với x∈R" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">x∈R
7) Cho x>0" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">x>0, y>0" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">y>0 và x+2y<5Π4" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">x+2y<5Π4. CMR:
cos⁡(x+y)<ysin⁡xxsin⁡y" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">cos(x+y)<ysinxxsiny
8) Cho các số α,β,γ" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">α,β,γ thoả mãn: α+β+γ=Π2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">α+β+γ=Π2
Tính giá trị nhỏ nhất của biểu thức:
A=tan⁡αtan⁡β+1+tan⁡βtan⁡γ+1+tan⁡γtan⁡α+1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">A=√tanαtanβ+1+√tanβtanγ+1+√tanγtanα+1
1. Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
2. Mệnh đề chứa biến là câu khẳng định mà sự đúng đắn, hay sai của nó còn tùy thuộc vào một hay nhiều yếu tố biến đổi.
Ví dụ: Câu "Số nguyên n chia hết cho 3" không phải là mệnh đề, vì không thể xác định được nó đúng hay sai.
Nếu ta gán cho n giá trị n= 4 thì ta có thể có một mệnh đề sai.
Nếu gán cho n giá trị n=9 thì ta có một mệnh đề đúng.
3. Phủ định của một mệnh đề A, là một mệnh đề, kí hiệu là ¯¯¯¯AA¯. Hai mệnh đề A và ¯¯¯¯AA¯
có những khẳng định trái ngược nhau.
Nếu A đúng thì ¯¯¯¯AA¯ sai.
Nếu A sai thì ¯¯¯¯AA¯ đúng.
4. Theo mệnh đề kéo theo
Mệnh đề kéo theo có dạng: "Nếu A thì B", trong đó A và B là hai mệnh đề. Mệnh đề "Nếu A thì B" kí hiệu là A =>B. Tính đúng, sai của mệnh đề kéo theo như sau:
Mệnh đề A => B chỉ sai khi A đúng và B sai.
5. Mệnh đề đảo
Mệnh đề "B=>A" là mệnh đề đảo của mệnh đề A => B.
6. Mệnh đề tương đương
Nếu A => B là một mệnh đề đúng và mệnh đề B => A cũng là một mệnh đề đúng thì ta nói A tương đương với B, kí hiệu: A ⇔ B.
Khi A ⇔ B, ta cũng nói A là điều kiện cần và đủ để có B hoặc A khi và chỉ khi B hay A nếu và chỉ nếu B.
7. Kí hiệu ∀, kí hiệu ∃
Cho mệnh đề chứa biến: P(x), trong đó x là biến nhận giá trị từ tập hợp X.
- Câu khẳng định: Với x bất kì tuộc X thì P(x) là mệnh đề đúng được kí hiệu là: ∀ x ∈ X : P(x).
- Câu khẳng định: Có ít nhất một x ∈ X (hay tồn tại x ∈ X) để P(x) là mệnh đề đúng kí hiệu là ∃ x ∈ X : P(x).
Bao nhiêu năm rồi