theo kế hoạch một công ty phải sản xuất 6000 chai dung dịch xát khuẩn trong một thời gian quy định.túy nhiên để tăng cường cho công tác phòng chống dịch ,mỗi ngày công ty đã sản xuất nhiều hơn dự định 100 chai dung dịch sát khuẩn.do đó công ty đã hoàn thành công việc trước thời hạn 3 ngày.hỏi theo kế hoạch,công ty phải sản xuất bao nhiêu chai dung dịch khử khuẩn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(\Delta=b^2-4ac=\left(-5\right)^2-4.2.1=17>0\)
=> pt có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{-\left(-5\right)}{2}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=\frac{1}{2}\end{cases}}\) (*)
b, \(A=3x_1^2+3x_2^2-5x_1x_2+7=3\left(x_1^2+x_2^2\right)-5x_1x_2+7\)
\(=3\left(x_1^2+2x_1x_2+x_2^2-2x_1x_2\right)-5x_1x_2+7\)
\(=3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2+7\) (1)
Thay (*) vào (1), ta được:
\(A=3\left[\left(\frac{5}{2}\right)^2-2\cdot\frac{1}{2}\right]-5\cdot\frac{1}{2}+7=\frac{81}{4}\)
c, \(B=4x_1+4x_2-8x_1^2-8x_2^2-5=4\left(x_1+x_2\right)-8\left(x_1^2+x_2^2\right)-5\)
\(=4\left(x_1+x_2\right)-8\left(x_1^2+2x_1x_2+x_2^2-2x_1x_2\right)-5\)
\(=4\left(x_1+x_2\right)-8\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5\) (2)
Thay (*) vào (2), ta được:
\(B=4\cdot\frac{5}{2}-8\left[\left(\frac{5}{2}\right)^2-2\cdot\frac{1}{2}\right]-5=-37\)
d, \(C=2x_1^3+2x_2^3+5=2\left(x_1^3+x_2^3\right)+5\)
\(=2\left(x_1^3+3x_1^2x_2+3x_1x_2^2+x_2^3-3x_1^2x_2-3x_1x_2^2\right)+5\)
\(=2\left[\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\right]+5\) (3)
Thay (*) vào (3), ta được:
\(C=2\left[\left(\frac{5}{2}\right)^3-3\cdot\frac{1}{2}\cdot\frac{5}{2}\right]+5=\frac{115}{4}\)
Xét: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\ge0\) nên ta có thể chứng minh được:
\(\left(a+b-c\right)\ge0;\left(b+c-a\right)\ge0;\left(c+a-b\right)\ge0\)
Đặt: \(x=a+b-c;y=b+c-a;z=c+a-b\)
\(\Rightarrow a=\frac{x+z}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
\(\Rightarrow64xyz\left(x+y+z\right)^3\le27\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\)
Ta có:
\(3xyz\left(x+y+z\right)\le\left(xy+yz+zx\right)^2\)
\(\Rightarrow64\cdot3xyz\left(x+y+z\right)^3\le64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\)
Vậy ta cần chứng minh:
\(64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\le3\cdot27\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Lấy căn bậc 2 của 2 vế ta được:
\(9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)
Đến đây bài toán được chứng minh.
Gọi chữ số hàng chục là x (x là các số tự nhiên từ 1 tới 9)
Gọi chữ số hàng đơn vị là y (y là các số tự nhiên từ 0 tới 9)
\(\Rightarrow\) Giá trị của số đó là: \(10x+y\)
Do số đó bằng tổng các chữ số cộng với 9 nên:
\(10x+y=x+y+9\Rightarrow9x=9\Rightarrow x=1\)
Số đó bằng 2 lần hiệu 2 chữ số của nó và cộng thêm 20:
Trường hợp 1: \(10x+y=2\left(x-y\right)+20\)
\(\Rightarrow10.1+y=2-2y+20\)
\(\Rightarrow3y=12\Rightarrow y=4\)
Trường hợp 2: \(10x+y=2\left(y-x\right)+20\)
\(\Rightarrow10.1+y=2y-2+20\)
\(\Rightarrow y=-8< 0\) (loại)
Vậy số đó là 14
ta có:
\(\frac{a}{1+b^2}=a.\frac{1}{1+b^2}=a.\left(\frac{1+b^2-b^2}{1+b^2}\right)=a.\left(1-\frac{b^2}{1+b^2}\right)\)
xét 1+b2,AD BĐT cô si ta có:
\(1+b^2\ge2\sqrt{1.b^2}=2b\)
\(\Rightarrow a.\left(1-\frac{b^2}{1+b^2}\right)\ge a.\left(1-\frac{b^2}{2b}\right)=a..\left(1-\frac{b}{2}\right)\)
tương tự ta có: \(\frac{b}{1+c^2}\ge b.\left(1-\frac{c}{2}\right);\frac{c}{1+a^2}\ge c.\left(1-\frac{a}{2}\right)\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a.\left(1-\frac{b}{2}\right)+b.\left(1-\frac{c}{2}\right)+c.\left(1-\frac{a}{2}\right)\)
\(=\left(a+b+c\right)-\left(\frac{a+b+c}{2}\right)=3-\frac{3}{2}=\frac{3}{2}\left(đpcm\right)\)
ko có trên mạng thì sao bạn:>
TK:
- Trong thiên nhiên, Silic không tồn tại ở dạng đơn chất mà chỉ tồn tại ở dạng hợp chất. Các hợp chất của silic tồn tại nhiều là cát trắng, đất sét (cao lanh). - Silic là chất rắn, màu xám, khó nóng chảy, có vẻ sáng của kim loại, dẫn điện kém. - Tinh thể silic tinh khiét là chất bán dẫn
TL:
Trong tự nhiên, Silic không tồn tại ở dạng đơn chất mà chỉ tồn tại ở dạng hợp chất. Các hợp chất của silic tồn tại nhiều là cát trắng, đất sét (cao lanh). Silic là chất rắn, màu xám, khó nóng chảy, có vẻ sáng của kim loại, dẫn điện kém. Tinh thể silic tinh khiét là chất bán dẫn.
@@@@@
HT
Tham khảo nhé:
Hannan woke up and realized something. Last night, she fell asleep on a wide bed with a comfortable, blue pillow and a fair blanket. Her clock was still on the table and the clock hands were turning around the numbers. But now, everything is different!
She was now at a stinky cottage. The walls was filled with cobwebs and the floor was dirty with muds. Hannah's smooth dress was muddy now. The clock was just under her head. The clock hands were not turning yesterday! Hannah turned the clock hands. They still stood dead. She stood up and walked to the kitchen. A round table with delicious dishes of food on it stood in the middle of the kitchen. A huge radio was placed near the empty bottle of water. Fames flew out of the window, into the blue sky. Hannah was starving and sat down the chair. She was ready to touch the cutleries when a mysterious voice flattered her mind: " Please don't touch anything you see in this kitchen. Leave before the kidnapper arrives." Hannah was surprised. She left the cottage immediately, thinking: " Maybe you are the kidnapper."
\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Mặt khác:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
ủa má, đây đâu phải toán 9, toán 6 hoặc toán 7 mà