Cho tam giác ABC (AB<AC) AD là phân giác của góc A .Từ trung điểm M của BC kẻ đường thằng song song với AD cắt AC tại E và cắt AB kéo dài tại K
a) chứng minh Ak=AE
b)chứng minh BK = CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) |x| + x2 - x = x + 10 (1)
Nếu x < 0 thì
|x| = - x
Khi đó (1) <=> x2 - 3x - 10 = 0
Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)
=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)
Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)
Phương trình (1) <=> x2 - x - 10 = 0
\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)
=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)
Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)
sao lại có hai cái vậy bạn mik làm 1 cái thôi nhá
Đặt : \(\left(a-b\right)=x;\left(b-c\right)=y;\left(c-a\right)=z\)
VT-VP : \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=[\left(x+y\right)^3+z^3]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+yz+z^2-3xy\right)\)
mà : \(x+y+z=0\left(a-b+b-c+c-a=0\right)\)
\(\Rightarrow VT-VP=0\)
\(\Rightarrowđpcm\)
\(C_2H_4+3O_2\xrightarrow[]{t^o}2CO_2+2H_2O\)
\(4Al+3O_2\xrightarrow[]{t^o}2Al_2O_3\\ C+O_2\xrightarrow[]{t^o}CO_2\)
\(C_2H_4+3O_2\underrightarrow{t^o}2CO_2+2H_2O\)
\(4Al+3O_2\underrightarrow{t^o}2Al_2O_3\)
\(C+O_2\underrightarrow{t^o}CO_2\)
C2H4 + 3O2 ---> 2CO2 + 2H2O
4Al + 3O2 ---> 2Al2O3
C + O2 --> CO2
Vận tốc khi về là:
35 . 6 : 5= 42 (km/ h )
30phuts = 0,5 h
Gọi thời gian đi là x (h ) ( x > 0,5 )
=> Thời gian về là x - 0,5 ( h )
Ta có PT:
35x= 42 ( x- 0,5 )
<=> 35x = 42x - 21
<=> 35x - 42x = -21
<=> 7x = 21
<=> x = 3
Vậy quãng đường AB dài là: 3. 35= 105 (km )
`x^2 -4=0`
`x^2=0+4`
`x^2 = 4`
\(=>\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(vay...\)