K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2023

A                    =  \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) 

\(\times\) \(xyz\)         =              \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)

\(\times\) \(xyz\) - A    =     \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\) 

A\(\times\)\(xyz\) - 1)  =    \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)

A                   =  (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\)   - \(xy^2z^3\)) : (\(xyz\) - 1)

Thay \(x\) = -1; \(y\) = -1; \(z\) = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

 

29 tháng 5 2023

A                    =  ��2�3xy2z3 + �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 

×× ���xyz         =              �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 + �2015�2016�2017x2015y2016z2017

×× ���xyz - A    =     �2015x2015�2016y2016�2017z2017 - ��2�3xy2z3 

A××���xyz - 1)  =    �2015x2015�2016�2017y2016z2017 - ��2�3xy2z3

A                   =  (�2015x2015 �2016y2016 �2017z2017   - ��2�3xy2z3) : (���xyz - 1)

Thay x = -1; y = -1; z = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

Nhớ tick nha 

29 tháng 5 2023

28 tháng 5 2023

    A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2\(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)\(\times\) 100  : 2 = 5050

A = 50502

 

 

 

 

28 tháng 5 2023

  A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2�244k2 + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)×× 100  : 2 = 5050

A = 50502

HT!

27 tháng 5 2023

Câu 11 

Giá trị của biểu thức:A =  \(xy-2x^2y\) + 3\(xy\) + 2y\(x^2\) tại \(x\) = 1; \(y\) = \(-\dfrac{1}{2}\)

A = (\(xy\) + 3\(xy\)) - (2\(x^2y\) - 2\(yx^2\)

A = 4\(xy\) 

Thay \(x\) = 1; y = - \(\dfrac{1}{2}\) vào biểu thức A ta có:  

A = 4 \(\times\)\(\times\) ( - \(\dfrac{1}{2}\))

A = -2

 

27 tháng 5 2023

Câu 9: Diện tích hình vuông là: \(x\) \(\times\) \(x\) = \(x^2\) (cm2)

           Diện tích hình chữ nhật là: \(x\times y\) = \(xy\) (cm2)

           Biểu thức biểu thị tổng diện tích của hình vuông và hình chữ nhật là:

               C.  \(x^2\) + \(xy\)

Bài 10: Thu gọn đa thức:

   \(xy\) - 2\(x^2\)y + 3\(xy\) + 2y\(x^2\)

= (\(xy\) + 3\(xy\)) - ( 2\(x^2\)y - 2y\(x^2\))

= 4\(xy\) - 0

Chọn C. 4\(xy\)

= 4\(xy\)

              

25 tháng 5 2023

Hình ảnh như vậy chưa đủ cơ sở làm em hi

25 tháng 5 2023

a) Xét ΔABD và ΔEBD có:

- BE = BA (giả thuyết)

\(\widehat{ABD}=\widehat{EBD}\) (vì BD là tia phân giác của \(\widehat{ABC}\) )

- BD là cạnh chung

Suy ra ΔABD = ΔEBD (c.g.c)

b) Từ a) suy ra DE = AD (vì hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}=90^o\) (vì hai góc tương ứng), hay \(DE\perp BC\)

c) Từ BE = BA và DE = AD suy ra B và D đều nằm trên đường trung trực của AE, hay BD là đường trung trực của AE

24 tháng 5 2023

  C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324

3C =      32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325

3C - C = -325 - 3

2C      = -325 - 3

2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\)  + 3]

2C = - \(\overline{..6}\)

⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\) 

⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)

24 tháng 5 2023

b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0

Vì (\(x+1\))2022 ≥ 0 

\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0

Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0

⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:

(\(x,y\)) = (-1; 1)

24 tháng 5 2023

Giả sử tất cả đều là câu trả lời đúng thì tổng số điểm đạt được là:

            50 \(\times\) \(\dfrac{1}{5}\) = 10 (điểm)

So với đề bài thừa ra số điểm là:

          10 - 8 = 2 (điểm)

Cứ thay 1 câu trả lời đúng bằng một câu trả lời sai thì số điểm giảm đi là:

             \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = \(\dfrac{2}{5}\) (điểm)

Số câu trả lời sai là:

             2 : \(\dfrac{2}{5}\) = 5 (câu)

Số câu trả lời đúng là:

            50 - 5 = 45 (câu)

Đáp số: 45 câu 

Thử lại kết quả ta có: số điểm mà học sinh đó đạt được vì trả lời đúng là:

             \(\dfrac{1}{5}\) \(\times\) 45 = 9 (điểm)

Số điểm học sinh bị trừ do trả lời sai là:

             \(\dfrac{1}{5}\) \(\times\) 5 = 1 (điểm)

Vậy tổng số điểm học sinh đó đạt được sau khi trả lời 50 câu là:

            9 - 1 = 8 (ok em nhé)

 

 

 

24 tháng 5 2023

Bạn học sinh đó trả lời đúng được số câu là :

\(8:\dfrac{1}{5}=40\left(câu\right)\)

Vậy bạn học sinh đó trả lời đúng 40 câu 

24 tháng 5 2023

Xét tam giác ABD vuông tại A có 
\(BD^2=AB^2+AD^2\Leftrightarrow BD=\sqrt{4^2+\left(3\sqrt{2}\right)^2}\Leftrightarrow BD=\sqrt{34}\)

24 tháng 5 2023

(5 - \(x\))(9\(x^2\) - 4) =0

\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\)\(\dfrac{2}{3}\)\(5\)}

 

24 tháng 5 2023

72\(x\)  + 72\(x\) + 3 = 344

72\(x\)  \(\times\) ( 1 + 73) = 344

72\(x\)  \(\times\) (1 + 343) = 344

72\(x\)  \(\times\) 344        = 344

72\(x\)                    = 344 : 344

72\(x\)                  = 1

72\(x\)                 =  70

\(2x\)                  = 0

\(x\)                   = 0

Kết luận: \(x\) = 0