Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{15}{21}=\dfrac{15:3}{21:3}=\dfrac{5}{7};\dfrac{21}{49}=\dfrac{21:7}{49:7}=\dfrac{3}{7}\)
mà 5>3
nên \(\dfrac{15}{21}>\dfrac{21}{49}\)
b: \(\dfrac{-19}{49}=\dfrac{-19\cdot47}{49\cdot47}=\dfrac{-893}{2303}\)
\(\dfrac{-23}{47}=\dfrac{-23\cdot49}{49\cdot47}=\dfrac{-1127}{2303}\)
mà -893>-1127
nên \(-\dfrac{19}{49}>-\dfrac{23}{47}\)
a: \(\dfrac{-11}{6}< -1\)
\(-1=\dfrac{-9}{9}< \dfrac{8}{-9}\)
Do đó: \(\dfrac{-11}{6}< \dfrac{8}{-9}\)
b: \(-\dfrac{25}{20}< 0\)
\(0< \dfrac{20}{25}\)
Do đó: \(-\dfrac{25}{20}< \dfrac{20}{25}\)
Bài 3:
\(A=75\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)
Đặt: \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\\ 4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)-\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\\ 3B=4^{2005}-1\\ B=\dfrac{4^{2005}-1}{3}\)
\(=>A=75\cdot\dfrac{4^{2005}-1}{3}+25\\ =25\left(4^{2005}-1\right)+25\\ =25\cdot\left(4^{2005}-1+1\right)\\ =25\cdot4^{2005}\\ =25\cdot4\cdot4^{2004}\\ =100\cdot4^{2004}\)
=> A chia hết cho 100
Bài 1:
a: \(\dfrac{5\cdot3^{11}+4\cdot3^{17}}{3^9\cdot5^2-3^9\cdot2^3}=\dfrac{3^{11}\cdot\left(5+4\cdot3^6\right)}{3^9\left(5^2-2^3\right)}\)
\(=3^2\cdot\dfrac{5+4\cdot729}{25-8}=3^2\cdot\dfrac{2921}{17}=\dfrac{26289}{17}\)
b: \(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{47\cdot50}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{47\cdot50}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=\dfrac{1}{3}\cdot\dfrac{24}{50}=\dfrac{24}{150}=\dfrac{8}{50}=\dfrac{4}{25}\)
c: \(1+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}\)
\(=\dfrac{2}{2}+\dfrac{2}{6}+...+\dfrac{2}{9900}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{9900}\right)\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)
d: \(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{99^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-98}{99}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\)
\(=\dfrac{1}{99}\cdot\dfrac{100}{2}=\dfrac{50}{99}\)
\(a)3^{2x-1}+2\cdot9^{x-1}=405\\ =>3^{2x-1}+2\cdot\left(3^2\right)^{x-1}=405\\ =>3^{2x-1}+2\cdot3^{2x-2}=405\\ =>3^{2x-2}\cdot\left(3+2\right)=405\\ =>3^{2x-2}\cdot5=405\\ =>3^{2x-2}=\dfrac{405}{5}=81\\ =>3^{2x-2}=3^4\\ =>2x-2=4\\ =>2x=4+2=6\\ =>x=\dfrac{6}{2}\\ =>x=3\)
\(b)\left(\dfrac{1}{3}\right)^{x-1}+5\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\\ =>\left(\dfrac{1}{3}\right)^{x-1}\left(1+5\cdot\dfrac{1}{3^2}\right)=\dfrac{14}{729}\\ =>\left(\dfrac{1}{3}\right)^{x-1}\cdot\dfrac{14}{9}=\dfrac{14}{729}\\ =>\left(\dfrac{1}{3}\right)^{x-1}=\dfrac{14}{729}:\dfrac{14}{9}\\ =>\left(\dfrac{1}{3}\right)^{x-1}=\dfrac{9}{729}=\dfrac{1}{81}\\ =>\left(\dfrac{1}{3}\right)^{x-1}=\left(\dfrac{1}{3}\right)^4\\ =>x-1=4\\ =>x=1+4\\ =>x=5\)
\(c)\dfrac{3}{5}\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{2}\left(\dfrac{3}{2}-1\right)=-\dfrac{1}{4}\\ =>\dfrac{3}{5}\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\\ =>\dfrac{3}{5}\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{4}=-\dfrac{1}{4}\\ =>\dfrac{3}{5}\left(3x^3-\dfrac{8}{9}\right)=0\\ =>3x^3-\dfrac{8}{9}=0\\ =>3x^3=\dfrac{8}{9}\\ =>x^3=\dfrac{8}{9}:3=\dfrac{8}{27}\\ =>x^3=\left(\dfrac{2}{3}\right)^3\\ =>x=\dfrac{2}{3}\)
a: \(3^{2x-1}+2\cdot9^{x-1}=405\)
=>\(\dfrac{3^{2x}}{3}+2\cdot3^{2x-2}=405\)
=>\(\dfrac{1}{3}\cdot3^{2x}+2\cdot3^{2x}\cdot\dfrac{1}{9}=405\)
=>\(3^{2x}\cdot\left(\dfrac{1}{3}+\dfrac{2}{9}\right)=405\)
=>\(3^{2x}\cdot\dfrac{5}{9}=405\)
=>\(3^{2x}=405:\dfrac{5}{9}=405\cdot\dfrac{9}{5}=81\cdot9=3^6\)
=>2x=6
=>x=3
b: \(\left(\dfrac{1}{3}\right)^{x-1}+5\cdot\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\)
=>\(\left(\dfrac{1}{3}\right)^x\cdot3+5\cdot\left(\dfrac{1}{3}\right)^x\cdot\dfrac{1}{3}=\dfrac{14}{9^3}\)
=>\(\left(\dfrac{1}{3}\right)^x\cdot\left(3+\dfrac{5}{3}\right)=\dfrac{14}{9^3}\)
=>\(\left(\dfrac{1}{3}\right)^x=\dfrac{14}{3^6}:\dfrac{14}{3}=\dfrac{3}{3^6}=\dfrac{1}{3^5}\)
=>x=5
c: \(\dfrac{3}{5}\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{2}\left(\dfrac{3}{2}-1\right)=-\dfrac{1}{4}\)
=>\(\dfrac{9}{5}x^3-\dfrac{24}{45}-\dfrac{1}{2}\cdot\dfrac{1}{2}+\dfrac{1}{4}=0\)
=>\(\dfrac{9}{5}x^3=\dfrac{24}{45}=\dfrac{8}{15}\)
=>\(x^3=\dfrac{8}{15}:\dfrac{9}{5}=\dfrac{8}{15}\cdot\dfrac{5}{9}=\dfrac{40}{135}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)
=>\(x=\dfrac{2}{3}\)
d: \(\dfrac{7}{x}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{29}{45}\)
=>\(\dfrac{7}{x}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(\dfrac{7}{x}+\dfrac{9}{45}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}=\dfrac{21}{45}=\dfrac{7}{15}\)
=>x=15
e: \(\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{5}{31}\)
=>\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{10}{31}\)
=>\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
=>\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
=>\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}=\dfrac{1}{93}\)
=>2x+3=93
=>2x=90
=>x=45
a; (2\(x\) - 1)2 = 49
(2\(x\) - 1)2 = 72
\(\left[{}\begin{matrix}2x-1=-7\\2x-1=7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-7+1\\2x=7+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-6\\2x=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{6}{2}\\x=\dfrac{8}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- 3; 4}
b; (5\(x-3\))2 - (4\(x\) - 7)2 = 0
(5\(x\) - 3 - 4\(x\) + 7)(5\(x\) - 3 + 4\(x\) - 7) = 0
(\(x\) + 4)(9\(x\) - 10) = 0
\(\left[{}\begin{matrix}x+4=0\\9x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{9}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- 4; \(\dfrac{10}{9}\)}
b: \(\dfrac{2}{5}-\left(\dfrac{4}{3}+\dfrac{4}{5}\right)-\left(-\dfrac{1}{9}-0,4\right)+\dfrac{11}{9}\)
\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{4}{5}+\dfrac{1}{9}+\dfrac{2}{5}+\dfrac{11}{9}\)
\(=\left(\dfrac{2}{5}-\dfrac{4}{5}+\dfrac{2}{5}\right)+\left(-\dfrac{4}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=-\dfrac{4}{3}+\dfrac{12}{9}=0\)
c: \(\dfrac{11}{8}\cdot\left[\left(-\dfrac{5}{11}:\dfrac{13}{8}-\dfrac{5}{11}:\dfrac{13}{5}\right)+\dfrac{-6}{33}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\cdot\dfrac{8}{13}-\dfrac{5}{11}\cdot\dfrac{5}{13}+\dfrac{-2}{11}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\left(\dfrac{8}{13}+\dfrac{5}{13}\right)-\dfrac{2}{11}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\dfrac{-7}{11}+\dfrac{3}{4}=-\dfrac{7}{8}+\dfrac{3}{4}=-\dfrac{1}{8}\)
a:\(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
=> \(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AC//BD
b: Vì AC//BD
nên \(\widehat{yCx}=\widehat{CDB}\)(hai góc đồng vị)
=>\(\widehat{yCx}=60^0\)
Ta có: \(\widehat{yCx}+\widehat{ACD}=180^0\)(hai góc kề bù)
=>\(\widehat{ACD}+60^0=180^0\)
=>\(\widehat{ACD}=120^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)(AC//BD)
=>\(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)
e: \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)
=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
=>x+1=0
=>x=-1
a: \(\dfrac{998}{555}=\dfrac{555+443}{555}=1+\dfrac{443}{555}\)
\(\dfrac{999}{556}=\dfrac{556+443}{556}=1+\dfrac{443}{556}\)
mà \(\dfrac{443}{555}>\dfrac{443}{556}\)
nên \(\dfrac{998}{555}>\dfrac{999}{556}\)
b: \(\dfrac{315}{380}=1-\dfrac{65}{380};\dfrac{316}{381}=1-\dfrac{65}{381}\)
Ta có: 380<381
=>\(\dfrac{65}{380}>\dfrac{65}{381}\)
=>\(-\dfrac{65}{380}< -\dfrac{65}{381}\)
=>\(-\dfrac{65}{380}+1< -\dfrac{65}{381}+1\)
=>\(\dfrac{315}{380}< \dfrac{316}{381}\)
=>\(-\dfrac{315}{380}>-\dfrac{316}{381}\)