Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi tuổi anh và tuổi em hiện nay là $3a$ và $a$ (tuổi)
6 năm nữa tuổi anh là: $3a+6$
6 năm nữa tuổi em là: $a+6$
Theo bài ra ta có: $3a+6=2(a+6)$
$\Rightarrow a=6$ (tuổi)
Vậy tuổi em hiện nay là 6 tuổi. Tuổi anh hiện nay là $6.3=18$ tuổi.
Số sách ở thư viện thứ nhất:
\(\left(15000+3000\right):2=9000\) (cuốn sách)
Số sách ở thư viện thứ hai:
\(15000-9000=6000\) (cuốn sách)
Đáp số:....
2\(xy\) + 6\(x\) - \(y\) = 6
2\(xy\) + 6\(x\) = 6 + \(y\)
\(x\)(2\(y\) + 6) = 6 + \(y\)
\(x\) = (6 + \(y\) ): (2\(y\)+6)
\(x\) \(\in\) Z ⇔ 6 + \(y\) ⋮ 2\(y\) + 6 ⇒ 2.(6+\(y\)) ⋮ 2\(y\) + 6 ⇒ 12 + 2\(y\) ⋮ 2\(y\) + 6
⇒ 2\(y\) + 6 + 6 ⋮ 2\(y\) + 6 ⇒ 6 ⋮ 2\(y\) + 6 ⇒ 3 ⋮ y + 3
Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(y+3\) | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (6+\(y\)):(2\(y\)+6) | 0 | -1 | 2 | 1 |
Các cặp (\(x;y\)) thỏa mãn đề bài lần lượt là:
(\(x\); \(y\)) = (0; -6); (-1; -4); (2; -2) ; (1; 0)
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(\left[\left(0,1\right)^2\right]^0+\left[\left(\dfrac{1}{7}\right)^{-1}\right]^2\cdot\dfrac{1}{49}\cdot\left[\left(2^2\right)^3:2^5\right]\)
\(=1+7^2\cdot\dfrac{1}{49}\cdot\left(2^6:2^5\right)\)
\(=1+49\cdot\dfrac{1}{49}\cdot2\)
\(=1+1\cdot2\)
\(=3\)
`(4*2^5) \div (2^3*1/6)`
`= (2^2*2^5) \div (8/6)`
`= 2^7 \div 4/3`
`= 96`
\(\left(0,125\right)^3.512=\left(0,125\right)^3.8^3=\left(0,125.8\right)^3=1^3=1\)
\(\left(0,125\right)^3.512\)
\(=\left(0,125\right)^3.8^3\)
\(=\left(0,125\cdot8\right)^3\)
\(=1^3\)
\(=1\)
Mình làm mẫu 1 câu thôi nhé !
Bài 1:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(\Rightarrow\dfrac{x}{7}=10\Rightarrow x=70\)
\(\Rightarrow\dfrac{y}{4}=10\Rightarrow y=40\)