Chứng minh rằng với mọi số nguyên n thì n(2n-3)-2n(n+1)chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\dfrac{2^{2x}.3^x}{2^{x+1}.3^y}=1\Leftrightarrow2^{x-1}.3^{x-y}=1\)
\(\Leftrightarrow\dfrac{2^x3^{x-y}}{2}=1\Leftrightarrow2^x.3^{x-y}=2\)
\(\Leftrightarrow2^x.3^{x-y}=2^1.3^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Ta có 2x + 1 . 3y = 12x
2x + 1 . 3y = 22x . 3x
⇒ x + 1 = 2x
x = y
Vậy x = y = 1
\(C=\dfrac{5122512}{2^2}-512\left(\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)
Đặt BT trong ngoặc đơn là B
\(\Rightarrow2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
\(B=2B-B=\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\)
\(\Rightarrow C=\dfrac{5120512+2000}{2^2}-512\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=\dfrac{512.10001+2^2.500}{2^2}-512\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=\dfrac{2^9.10001+2^2.500}{2^2}-2^9\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=2^7.10001+500-2^7+\dfrac{1}{2}=\)
\(=2^7.10000+500+0,5=1280000+500+0,5=1280500,5\)
\(A=x^2-10x+32=x^2-10x+25+9=\left(x-5\right)^2+9\)
mà \(\left(x-5\right)^2\ge0\)
\(\Rightarrow\left(x-5\right)^2+9\ge9\)
\(\Rightarrow Min\left(A\right)=9\)
A=x2−10x+32=x2−10x+25+9=(x−5)2+9
mà (�−5)2≥0(x−5)2≥0
⇒(�−5)2+9≥9⇒(x−5)2+9≥9
⇒���(�)=9⇒Min(A)=9
A B C x y
\(\widehat{xAB}+\widehat{BAC}+\widehat{yBC}=180^o\) (1)
xy//BC nên
\(\widehat{xAB}=\widehat{B}\) (góc sole trong) (2)
\(\widehat{yBC}=\widehat{C}\) (góc so le trong) (3)
Từ (1) (2) (3)
\(\Rightarrow\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
Ta có: \(35^{25}-35^{24}\)
\(=35^{24}\cdot\left(35-1\right)\)
\(=35^{24}\cdot34\)
Mà: 34 ⋮ 17
\(\Rightarrow35^{24}\cdot34\) ⋮ 17
Hay \(35^{25}-35^{24}\) ⋮ 17 (đpcm)
\(\left(35^{25}-35^{24}\right)=\left(35.35^{24}-35^{24}\right)=34.35^{24}\)
mà \(34⋮17\)
\(\Rightarrow34.35^{24}⋮17\)
⇒đpcm
\(VT=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{100}\)
\(VP=\dfrac{1}{26}+\dfrac{1}{27}+...\dfrac{1}{50}=\dfrac{2}{26}+\dfrac{2}{28}+...\dfrac{2}{50}...\)
(VP lần lượt triển khai \(\dfrac{1}{26}=\dfrac{2}{26}-\dfrac{1}{26};\dfrac{1}{28}=\dfrac{2}{28}-\dfrac{1}{28}...\))
Tiếp tục \(\dfrac{2}{26}+\dfrac{2}{28}+...\dfrac{2}{50}...=\dfrac{1}{13}+\dfrac{1}{14}+...\dfrac{1}{25}...\)
(VP lần lượt triển khai \(\dfrac{1}{14}=\dfrac{2}{14}-\dfrac{1}{14};\dfrac{1}{16}=\dfrac{2}{16}-\dfrac{1}{16}...\))
Chuyển sang VT để đơn giản phần số đối \(-\dfrac{1}{2};\dfrac{1}{2}...\)
Cuối cùng ta sẽ được \(VT=1;VP=\dfrac{2}{2}\Rightarrow VT=VP\)
⇒Đpcm
\(-\dfrac{3}{16}+-\dfrac{3}{8}-\dfrac{5}{4}\)
\(=-\dfrac{3}{16}-\dfrac{3}{8}-\dfrac{5}{4}\)
\(=-\dfrac{3}{16}-\dfrac{6}{16}-\dfrac{20}{16}\)
\(=\dfrac{-3-6-20}{16}\)
\(=-\dfrac{29}{16}\)
\(\left(-\dfrac{25}{13}\right)+\dfrac{-9}{17}+\dfrac{12}{13}+\dfrac{25}{17}\)
\(=\left[\left(-\dfrac{25}{13}\right)+\dfrac{12}{13}\right]+\left[\left(-\dfrac{9}{17}+\dfrac{25}{17}\right)\right]\)
\(=-\dfrac{13}{13}+\dfrac{17}{17}\)
\(=-1+1\)
\(=0\)
\(-\dfrac{1}{12}+\left(-\dfrac{5}{6}\right)-\dfrac{4}{3}=-\dfrac{1}{12}-\dfrac{5}{6}-\dfrac{4}{3}=-\dfrac{1}{12}-\dfrac{10}{12}-\dfrac{16}{12}=-\dfrac{27}{12}=-\dfrac{9}{4}\)
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\)
mà \(-5n⋮5\left(n\in Z\right)\)
⇒đpcm
\(n\left(2n-3\right)-2n\left(n+1\right)=\)
\(=2n^2-3n-2n^2-2n=-5n⋮5\)