cho tỉ lệ thức a/b=c/d.chứng minh rằng 2012a+2013b/2012a-2013b=2012c+2013d/2012c2013d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B E D I 60 0 F
Giải: Xét tam giác ABC có góc A + góc B + góc C = 1800 (ĐL : tổng 3 góc của 1 tam giác)
=> góc B + góc C = 1800 - góc A = 1800 - 600 = 1200
Do BD là tia phân giác của góc B nên :
góc ABD = góc DBC = góc B/2
DO CE là tia phân giác của góc C nên :
góc ACE = góc ECB = góc C/2
Ta có: góc B + góc C = 1200
hay 2\(\widehat{DBC}\)+ 2\(\widehat{ECB}\)= 1200
=>2(góc DBC + góc ECB) =1200
=> góc DBC + góc ECB = 1200 : 2
=> góc DBC + góc ECB = 600
Xét tam giác BIC có góc DBC + góc BIC + góc ECB = 1800 (tổng 3 góc của 1 tam giác)
=> góc BIC = 1800 -(góc DBC + góc ECB) = 1800 - 600 = 1200
b) Do IF là tia phân giác của góc BIC
nên góc BIK = góc FIC = góc BIC/2 = 1200/2 = 600
Ba điểm B,I,D thẳng hàng nên góc BIK + góc FIC + góc CID = 1800
=> góc CID = 1800 - (góc BIK + góc FIC) = 1800 - 1200 = 600
Xét tam giác DIC và tam giác FIC
có góc DCI = góc ICF (gt)
BI : chung
góc CID = góc CIF = 600(cmt)
=> tam giác DIC = tam giác FIC (c.g.c)
=> CD = CF (hai cạnh tương ứng)
=> ID = IF (hai cạnh tương ứng) (1)
Ta có : góc CID = góc EIB = 600(đối đỉnh)
Xét tam giác EIB và tam giác FIB
có góc EIB = góc BIF = 600
BI : chung
góc FBI = góc IBF (gt)
=> tam giác EIB = tam giác FIB (g.c.g)
=> BE = BF (hai cạnh tương ứng)
=> IE = IF (hai cạnh tương ứng) (2)
Mà BC = BF + FC
hay BC = BE + CD
Từ (1) và (2) suy ra Đpcm
x O y A B H C M K I
CM : a) Xét tam giác OAH và tam giác OBH
có OA = OB (gt)
OH : chung
AH = BH (gt)
=> tam giác OAH = tam giác OBH (c.c.c)
b) Ta có : tam giác OAH = tam giác OBH (cmt)
=> góc AHO = góc OHB (hai góc tương ứng)
Mà góc AHO + góc OHB = 1800
hay 2\(\widehat{OHA}\) = 1800
=> góc OHA = 1800 : 2
=> góc OHA = 900
c) Ta có : tam giác OAH = tam giác OBH (cmt)
=> góc AOH = góc HOB (hai góc tương ứng)
Xét tam giác OAC và tam giác OBC
có OA = OB (gt)
góc AOC = góc COB (cmt)
OC : chung
=> tam giác OAC = tam giác OBC (c.g.c)
c) Xét tam giác OMI và tam giác HMI
có góc OIM = góc MIH = 900 (gt)
OI = IH (gt)
IM : chung
=> tam giác OMI = tam giác HMI (c.g.c)
=> góc MOH = góc MHI (hai góc tương ứng) (1)
Mà góc MOH = góc HOB (vì tam giác OAH = tam giác OBH) (2)
Từ (1) và (2) suy ra góc MHI = góc HOB (5)
Xét tam giác OBC có góc B = 900
=> góc HOB + góc OCA = 900 (3)
Xét tam giác HKC vuông tại K có góc OCA + góc CHK = 900 (4)
Từ (3) và (4) suy ra góc HOB = góc CHK (6)
Từ (5) và (6) suy ra góc MHI = góc CHK
Ta có : OH vuông góc với BC => góc AHC = 900
Ba điểm I,H,C thẳng hàng nên góc IHM + góc MHA + góc AHC = 1800
hay góc CHK + góc MHA + góc AHC = 1800
=> ba điểm M,H,K thẳng hàng
a) Xét tgiac ABM và tgiac ACM có:
AB = AC (gt)
góc ABM = góc ACM (gt)
MB = MC (gt)
suy ra: tgiac ABM = tgiac ACM (c.g.c)
b) tgiac ABM = tgiac ACM
=> góc AMB = góc AMC
mà góc AMB + góc AMC = 1800
=> góc AMB = góc AMC = 900
hay AM vuông góc với BC
c) Xét tgiac MBK và tgiac MCA có
MB = MC (gt)
góc BMK = góc CMA (dd)
MK = MA (gt)
suy ra: tgiac MBK = tgiac MCA (c.g.c)
=> góc MBK = góc MCA
mà 2 góc này so le trong
=> BK // MC
A B C M K
CM : Xét tam giác ABM và tam giác ACM
có AB = AC (gt)
BM = CM (gt)
AM : chung
=> tam giác ABM = tam giác ACM (c.c.c)
b) Ta có : Tam giác ABM = tam giác ACM (cmt)
=> góc BMA = góc AMC (hai góc tương ứng)
Mà góc BMA + góc AMC = 1800 ( kề bù )
hay 2\(\widehat{BMA}\)= 1800
=> góc BMA = 1800 : 2
=> góc BMA = 900
c) Xét tam giác AMK và tam giác CMA
có MK = MA (gt)
góc BMK = góc AMC ( đối đỉnh)
BM = CM (gt)
=> tam giác AMK = tam giác CMA (c.g.c)
=> góc KBM = góc MCA (hai góc tương ứng)
Mà góc KBM và góc MCA ở vị trí so le trong
=> Bk // AC
a = 1+ 1/2 +1/3+...+1/ 1025 + 1/1026
a= 1+ (1/12+1/3+....+1/1025) - (1/2+1/3+...+1/1025+ 1/1026)
a= 1+ (1/2- 1/1026)
a= 1+ 256/513
a= 283/171
ko chắc chắn
đúng k nha
Ta có:
AB=1+1/2+1/3+...+1/4026/1+1/3+1/5+1/7+...+1/4025
⇒AB=(1+1/3+1/5+...+1/4025)+(1/2+1/4+...+1/2046)1+1/3+1/5+...+1/4025
⇒AB=1+1/3+1/5+...+1/4025/1+1/3+1/5+....+1/4025+1/2+1/4+...+1/4026/1+1/3+1/5+...+1/4025
⇒AB=1+1/2+1/4+...+1/2046/1+1/3+1/5+...+1/4025
Dễ thấy AB>1
Mà 20132014<1
A C B D K
CM : Xét tam giác ACD và tam giác ABD
có AC = AD (gt)
góc CAD = góc DAB (gt)
AD : chung
=> tam giác ACD = tam giác ABD (c.g.c)
=> góc CDA = góc BDA (hai góc tương ứng
Mà góc CDA + góc BDA = 1800 (kề bù)
hay 2\(\widehat{BDA}\) = 1800
=> góc BDA = 1800 : 2
=> góc BDA = 900
=> AD vuông góc với BC
b) Ta có : CK \(\perp\)BC => góc C = 900
Ta lại có: góc ADC + góc C = 900 + 900 = 1800
Mà góc ADC và góc C ở vị trí trong cùng phía
=> CK // AD
Điểm M nằm trên đường thẳng hay cái gì bạn ? Bạn chỉ nói CM mà không nói vị trí điểm M thì làm sao mà làm ?
A B C E D
Trong tam giác vuông góc vuông là góc lớn nhất
=> cạnh huyền là cạnh lớn nhất trong tam giác đó
Xét tam giác BDC vuông tại D:
có BC là cạnh huyền =>BC>BD
Tương tự tam giác BCE : BC>EC
=> BC+BC> BD+EC
=> 2. BC> BD+EC
=> BC> (BD+EC):2
a) Xét 2 tgiac vuông: tgiac CDK và tgiac ADG có:
CD = AD
góc CDK = ADG
suy ra: tgiac CDK = tgiac ADG (ch_gn)
=> CK = AG; góc DCK = góc DAG
Xét tgiac KAC và tgiac GCA có:
CK = AG
góc KCA = góc GAC
cạnh AC chung
suy ra: tgiac KAC = tgiac GCA
=> AK = CG
\(\frac{x}{5}\) =\(\frac{4}{10}\)
\(x.10=5.4\)
\(x.10=20\)
\(x=20:10\)
\(x=2\)
\(\Rightarrow x=2\)
Giải:
Ta có : a/b = c/d => a/c = b/d
Đặt a/c = b/d = k => a = ck ; b = dk
Khi đó, ta có : \(\frac{2012.ck+2013.dk}{2012.ck-2013.dk}=\frac{\left(2012c+2013d\right).k}{\left(2012c-2013d\right).k}=\frac{2012c+2013d}{2012c-2013d}\)(đpcm)