K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

nguyenlinh0123

7 tháng 4 2018

Xét  \(\Delta BEC\) và     \(\Delta CAF\) có:

\(\widehat{CBE}=\widehat{FCA}=90^0\)

\(\widehat{BEC}=\widehat{CAF}\)  (cùng phụ với góc CAE)

suy ra:   \(\Delta BEC~\Delta CAF\)  (g.g)

\(\Rightarrow\)\(\frac{BE}{AC}=\frac{BC}{CF}\)

\(\Rightarrow\)\(BE.CF=AC.BC\)

7 tháng 4 2018

a)  Xét   \(\Delta AEB\) và     \(\Delta AFC\)có:

\(\widehat{AEB}=\widehat{AFC}=90^0\)

\(\widehat{BAC}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\)(g.g)

b)  Xét  \(\Delta HEA\)và    \(\Delta HDB\) có:

\(\widehat{HEA}=\widehat{HDB}=90^0\)

\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)

suy ra:   \(\Delta HEA~\Delta HDB\)(g.g)

\(\Rightarrow\)\(\frac{HE}{HD}=\frac{HA}{HB}\)

\(\Rightarrow\)\(HD.HA=HE.HB\)

7 tháng 4 2018

Thay x = -1 vào vế trái của phương trình, ta có:

\(\left(-1\right)^2\) – 3(-1) – 4 = 1 + 3 – 4 = 0

Vậy x = -1 là một nghiệm của phương trình

Tương tự: x = 4 cũng là nghiệm của phương trình

x = 1; x = -4 không phải là nghiệm của phương trình.

7 tháng 4 2018

\(x^2-3x-4=0\)

\(x^2-4x+x-4=0\)

\(x\left(x-4\right)+\left(x-4\right)=0\)

\(\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)

7 tháng 4 2018

\(\text{(2a – b)(4a^2 + 2ab +b^2)}\)

\(\text{2a.4a^2 + 2a.2ab + 2a.b^2 + (-b).4a^2 + (-b).2ab + (-b).b^2}\)

\(\text{8a^3 + 4a^2b + 2ab^2 – 4a^2b – 2ab^2 – b^3 = 8a^3 – b^3}\)

8 tháng 4 2018

2a – b)(4a^2 + 2ab +b^2)

= 2a.4a^2 + 2a.2ab + 2a.b^2 + (-b).4a^2 + (-b).2ab + (-b).b^2

= 8a^3 + 4a^2b + 2ab^2 – 4a^2b – 2ab^2 – b^3

= 8a^3 – b^3

\(2a – b)(4a^2 + 2ab +b^2) = 2a.4a^2 + 2a.2ab + 2a.b^2 + (-b).4a^2 + (-b).2ab + (-b).b^2 = 8a^3 + 4a^2b + 2ab^2 – 4a^2b – 2ab^2 – b^3 = 8a^3 – b^3\)

7 tháng 4 2018

a)  Tứ giác  \(AEHF\)có:    \(\widehat{A}=\widehat{E}=\widehat{F}=90^0\)

\(\Rightarrow\)\(AEHF\) là hình chữ nhật

Xét  \(\Delta AEH\)và   \(\Delta CFH\) có:

\(\widehat{AEH}=\widehat{CFH}=90^0\)

\(\widehat{EAH}=\widehat{FCH}\)  (cùng phụ với góc HAC)

suy ra:    \(\Delta AEH~\Delta CFH\) (g.g)

7 tháng 4 2018

Đáng lẽ là bé hơn hoặc bằng

(ax + by)2 = a2x2 + 2axby + b2y2 

(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2

Ta cần chứng minh:

\(2axby\le b^2x^2+a^2y^2\)'

\(\Leftrightarrow0\le b^2x^2-2aybx+a^2y^2\)

<=> 0 \(\le\)(bx - ay)2 (đúng)

Vậy bđt đc chứng minh

7 tháng 4 2018

mk chỉnh lại đề:  kẻ các đường cao AH và BK cắt nhau tại I

a)  Xét   \(\Delta BKC\) và       \(\Delta AHC\)có:

\(\widehat{BKC}=\widehat{AHC}=90^0\)

\(\widehat{C}\)  chung

suy ra:    \(\Delta BKC~\Delta AHC\)

b)   \(\Delta BKC~\Delta AHC\)

\(\Rightarrow\)\(\frac{KC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow\)\(\frac{KC}{BC}=\frac{HC}{AC}\)

Xét  \(\Delta HKC\)và   \(\Delta ABC\) có:

\(\frac{KC}{BC}=\frac{HC}{AC}\) (cmt)

\(\widehat{C}\)   chung

suy ra:   \(\Delta HKC~\Delta ABC\) (c.g.c)

8 tháng 4 2018

cau cuoi nua bn