K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
15 tháng 6

\(y=\dfrac{x^2-3x+1}{x-2}\)

\(D=R\ne\left\{2\right\}\)

\(\lim\limits_{x\rightarrow2^+}y=\dfrac{-1}{0^+}=-\infty\)

Vậy TCĐ của HS là: x=2

Hoặc cách khác: 

Xét mẫu bằng 0 với giá trị đó nếu tử khác 0 => Là TCĐ

nếu tử bằng 0 => HS không có TCĐ

.

\(y=\dfrac{x^2-3x+1}{x-2}=\dfrac{x\left(x-2\right)-\left(x-2\right)-1}{x-2}=x-1-\dfrac{1}{x-2}\)

Ta thấy: \(\lim\limits_{x\rightarrow+\infty}\left[y-\left(x-1\right)\right]=\lim\limits_{x\rightarrow+\infty}-\dfrac{1}{x-2}=0\)

Vậy: y=x-1 là TCX của HS

Đề thi đánh giá năng lực

14 tháng 6

Tôi hiểu bạn muốn tìm GTLN (giá trị lớn nhất) và GTNN (giá trị nhỏ nhất) của hàm số $y = \frac{3x^2 - 4x}{x^2 - 1}$.

Để tìm GTLN và GTNN của hàm số này, chúng ta cần:

  1. Tìm điểm cực trị của hàm số:

    • Tìm điểm cực đại: $\frac{dy}{dx} = 0$
    • Tìm điểm cực tiểu: $\frac{dy}{dx} = 0$
  2. Tìm GTLN và GTNN của hàm số tại các điểm cực trị và các điểm biên (nếu có).

Áp dụng các bước trên, chúng ta có:

$\frac{dy}{dx} = \frac{(3x^2 - 4x)(x^2 - 1) - (3x^2 - 4x)(2x)}{(x^2 - 1)^2}$

Giải phương trình $\frac{dy}{dx} = 0$, ta được:
$x = 0$ và $x = 2$

Thay $x = 0$ và $x = 2$ vào hàm số $y$, ta được:
$y(0) = 0$
$y(2) = \frac{3(2)^2 - 4(2)}{(2)^2 - 1} = \frac{12 - 8}{3} = 1$

Như vậy, GTLN của hàm số là $y(2) = 1$ và GTNN của hàm số là $y(0) = 0$.

 

13 tháng 6

Để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \( y = 2\sqrt{1-x^2} + x^2 \) trên miền xác định của nó, ta thực hiện các bước sau:

1. **Xác định miền xác định của hàm số**:
   \[
   1 - x^2 \geq 0 \implies -1 \leq x \leq 1
   \]
   Do đó, hàm số xác định trên khoảng \([-1, 1]\).

2. **Tính đạo hàm của hàm số**:
   \[
   y = 2\sqrt{1 - x^2} + x^2
   \]
   Đạo hàm của hàm số \( y \) là:
   \[
   y' = \frac{d}{dx} \left( 2\sqrt{1 - x^2} + x^2 \right)
   \]
   Áp dụng quy tắc đạo hàm:
   \[
   y' = 2 \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right) + \frac{d}{dx} \left( x^2 \right)
   \]
   \[
   = 2 \cdot \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) + 2x
   \]
   \[
   = -\frac{2x}{\sqrt{1 - x^2}} + 2x
   \]
   \[
   = 2x \left(1 - \frac{1}{\sqrt{1 - x^2}}\right)
   \]

3. **Tìm các điểm cực trị**:
   Giải phương trình \( y' = 0 \):
   \[
   -\frac{2x}{\sqrt{1 - x^2}} + 2x = 0
   \]
   \[
   2x \left( 1 - \frac{1}{\sqrt{1 - x^2}} \right) = 0
   \]
   \[
   2x = 0 \quad \text{hoặc} \quad 1 - \frac{1}{\sqrt{1 - x^2}} = 0
   \]
   \[
   x = 0 \quad \text{hoặc} \quad \sqrt{1 - x^2} = 1
   \]
   \[
   x = 0 \quad \text{hoặc} \quad 1 - x^2 = 1
   \]
   \[
   x = 0 \quad \text{hoặc} \quad x^2 = 0
   \]
   \[
   x = 0
   \]

4. **Xét giá trị của hàm số tại các điểm biên và điểm cực trị**:
   \[
   y(-1) = 2\sqrt{1 - (-1)^2} + (-1)^2 = 2\sqrt{0} + 1 = 1
   \]
   \[
   y(1) = 2\sqrt{1 - 1^2} + 1^2 = 2\sqrt{0} + 1 = 1
   \]
   \[
   y(0) = 2\sqrt{1 - 0^2} + 0^2 = 2\sqrt{1} + 0 = 2
   \]

Vậy giá trị lớn nhất của hàm số trên khoảng \([-1, 1]\) là \( 2 \) và giá trị nhỏ nhất là \( 1 \).

13 tháng 6

 Chứng minh không có nghiệm nguyên dương nhé chứ vẫn có nghiệm nguyên.

13 tháng 6

\(D=\left[0;2\right]\)

Có \(f'\left(x\right)=\dfrac{-x+1}{\sqrt{2x-x^2}},\forall x\in\left(0;2\right)\)

\(f'\left(x\right)=0\Leftrightarrow x=1\)

Vậy hàm số đã cho đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)

ĐKXĐ: \(2x-x^2>=0\)

=>\(x^2-2x< =0\)

=>x(x-2)<=0

=>0<=x<=2

\(y=\sqrt{2x-x^2}\)

=>\(y'=\dfrac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\dfrac{-2x+2}{2\sqrt{2x-x^2}}=\dfrac{-x+1}{\sqrt{2x-x^2}}\)

Đặt y'>0

=>-x+1>0

=>-x>-1

=>x<1

=>0<=x<1

=>Hàm số đồng biến khi 0<=x<1

Đặt y'<0

=>-x+1<0

=>-x<-1

=>x>1

=>1<x<=2

=>Hàm số nghịch biến khi 1<x<=2

11 tháng 6

a) Vì \(p\) là snt lớn hơn 3 nên \(p⋮̸3\) \(\Rightarrow p^2\equiv1\left[3\right]\) hay \(p^2-1⋮3\)

b) Theo câu a), ta có \(p^2\equiv q^2\equiv1\left[3\right]\) nên \(p^2-q^2⋮3\)

c) Vì \(p,q\) là các snt lớn hơn 3 nên chúng cũng là các snt lẻ \(\Rightarrow p^2\equiv q^2\equiv1\left[8\right]\)

\(\Rightarrow p^2-q^2⋮8\)

11 tháng 6

 Cho \(p=2,p=3\) ta thấy không thỏa mãn.

 Cho \(p=5\) ta thấy thỏa mãn.

 Xét \(p>5\), khi đó \(p⋮̸5\). Khi đó \(p^2\equiv1,4\left[5\right]\) (tính chất của scp)

 Khi \(p^2\equiv1\left[5\right]\) thì \(p^2+1⋮5\), khi \(p^2\equiv4\left[5\right]\) thì \(p^2+6⋮5\) nên 1 trong 2 số này là hợp số, không thỏa mãn.

 Vậy \(p=5\) là snt duy nhất thỏa mãn ycbt.

 

11 tháng 6

    Đây là dạng toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau.

+ Nếu p = 2 ta có: p2 + 4 = 22 + 4  = 4 + 4 = 8 (loại)

+ Nếu p = 3 ta có: p2 + 6 =  32 + 6 = 9 + 6  =  15 (loại)

+ Nếu p = 5 ta có: p2 + 4 = 52 + 4  = 25 + 4  = 29 (thỏa mãn)

                             p2 + 6 = 52 + 6 = 25 + 6 = 31 (thỏa mãn)

+ Nếu p > 5 khi đó: p2 : 5 dư 1 hoặc 4 (tính chất số chính phương)

TH1 p2 :  5 dư 1 ⇒ p2 + 4 ⋮ 5 (là hợp số loại)

TH2 p2 : 5 dư 4 \(\Rightarrow\) p2 + 6 ⋮ 5 (là hợp số loại)

Từ những lập luận trên ta có: 

p = 5 là giá trị số nguyên tố duy nhất thỏa mãn đề bài 

Kết luận số nguyên tố thỏa mãn đề bài là 5.

               

11 tháng 6

ABCD là hình vuông nên OA=OC => d( A,(SBD) ) = d( C,(SBD) )

Kẻ AH vuông SO

BD vuông AO, BD vuông SA nên BD vuông (SAO) => BD vuông AH

=> AH vuông (SBD)

=> d( A,(SBD) ) = AH

Xét SAO : \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{SA^2}\) + \(\dfrac{1}{AO^2}\)

SA = 3a, AO = \(a\sqrt{2}\)      => AH =  \(\dfrac{3a\sqrt{22}}{11}\) 

Vậy khoảng cách từ C đến (SBD) = \(\dfrac{3a\sqrt{22}}{11}\)

10 tháng 6

\(n^2+1⋮2n+1\)

\(\Leftrightarrow\exists k\inℕ^∗:n^2+1=k\left(2n+1\right)\)

\(\Leftrightarrow n^2-2kn+1-k=0\)

Có \(\Delta'=\left(-k^2\right)-\left(1-k\right)=k^2+k-1\)

Vì \(n\inℕ^∗\)nên \(\Delta'\) phải là số chính phương 

\(\Leftrightarrow\exists l\inℕ^∗:k^2+k-1=l^2\)

\(\Leftrightarrow4k^2+4k-4=4l^2\)

\(\Leftrightarrow\left(4k^2+4k+1\right)-4l^2=5\)

\(\Leftrightarrow\left(2k+1\right)^2-\left(2l\right)^2=5\)

\(\Leftrightarrow\left(2k+2l+1\right)\left(2k-2l+1\right)=5\)

 Vì \(k,l\inℕ^∗\) và \(2k+2l+1>2k-2l+1>0\) nên ta chỉ có 1 TH duy nhất là \(\left\{{}\begin{matrix}2k+2l+1=5\\2k-2l+1=1\end{matrix}\right.\) \(\Leftrightarrow k=l=1\)

 Khi đó \(n^2+1=2n+1\) 

 \(\Leftrightarrow n^2=2n\)

 \(\Leftrightarrow\left[{}\begin{matrix}n=0\left(loại\right)\\n=2\left(nhận\right)\end{matrix}\right.\)

 Vậy \(n=2\) là số nguyên dương duy nhất thỏa mãn ycbt.