Hỏi có bao nhiêu cách để chia cho 3 bạn a ,b, c tám cái kẹo sao cho mỗi người nhận được ít nhất 1 cái ( không bẻ kẹo )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)xét tam giác ABC và tam giác HBC có
góc BAC=PHC=90o
đỉnh C chung
=>2 tam giác đồng dạng
=>PH/AB=PC/BC (1)
mà AB =PA (2)
=> tam giác ABC = tam giác ADP ( 2 tam giác vuông có 1 cạnh bằng nhau )
=>BC=PD (3)
từ (1)(2)(3) =>PH/PA=PC/PD=>PA.PC=PH.PD (dpcm)
2) ta có
góc BHP= góc BIC=90o ( chắn nửa hình tròn ) => tứ giác BIDH nội tiếp
=> góc IBH=HCA
=>góc IDP+góc PDC =180o => I,C,D thẳng hàng
CHÚC BẠN HỌC GIỎI
K MÌNH NHÉ
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.
Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.
b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)
Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);
Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)
Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)
Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).
Dự đoán khi \(a=b=c=\frac{1}{3}\) khi đó \(P=\frac{19}{27}\) (gọi P=biểu thức đầu bài)
Ta đi chứng minh nó là GTNN của P
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\left(a^2+b^2+c^2\right)+4abc\ge\frac{19}{27}\left(a+b+c\right)^3\)
Khai triển và rút gọn, ta được BĐT tương đương là:
\(8\left(a^3+b^3+c^3\right)+24\left(a^2b+b^2c+c^2a\right)-30\left(ab^2+bc^2+ca^2\right)-6abc\ge0\)
\(\Leftrightarrow8\left(a+b+c\right)^3\ge54\left(ab^2+bc^2+ca^2+abc\right)\)
\(\Leftrightarrow ab^2+bc^2+ca^2+abc\le\frac{4}{27}\left(a+b+c\right)^3\)
BĐT trên đúng. Nên \(P_{Min}=\frac{19}{27}\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\hept{\begin{cases}\sqrt{2x+1}-\sqrt{2y+1}=x-y\left(1\right)\\x^2+9y^2-12xy+4=0\left(2\right)\end{cases}}\)
Xét (1) ta có:
\(2\sqrt{2x+1}-2\sqrt{2y+1}=2x-2y\)
\(\Leftrightarrow2x+1-2\sqrt{2x+1}+1=2y+1-2\sqrt{2y+1}+1\)
\(\Leftrightarrow\left(\sqrt{2x+1}-1\right)^2=\left(\sqrt{2y+1}-1\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x+1}-1=\sqrt{2y+1}-1\\\sqrt{2x+1}-1=1-\sqrt{2y+1}\end{cases}}\)
Tới đây thì đơn giản rồi nhé
cái pt đầu bạn nhân 2 vế rồi tách ra sẽ được (căn(2x+1)-1)2=(căn(2y+1)-1)2
giải pt ý rồi biểu diễn x theo y rồi thay vào pt dưới ta được phương trình bậc 2 1 ẩn
còn 5 cái mình cầm