Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(9x-x7+x3=90+x-10x-7+10x+3\)
\(=\left(90-7+3\right)+\left(x-10x+10x\right)\)
\(=86+x\)
\(9x-x7+x3\)
\(=9x-7x+3x\) ( Giao hoán x7->7x, x3->3x)
\(=\left(9-7+3\right)x\)
\(=5x\)
Trả lời:
Ta có: \(9b+1⋮b+1\)\(\Leftrightarrow9\left(b+1\right)-8⋮b+1\)
Vì \(9\left(b+1\right)⋮b+1\)nên \(8⋮b+1\)
hay \(b+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
b+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
b | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
Vậy \(x\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\) thì \(9b+1⋮b+1\)
Ta thấy trong hình, có 2 trường hợp:
- Tia Oy nằm giữa 2 tia Oz và Ox
- Tia Oz nằm giữa 2 tia Oy và Ox
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
\(n+5⋮n-1\)
\(n-1+6⋮n-1\Leftrightarrow6⋮n-1\)
\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Vì 12 là bội của b+3 nên 12 chia hết cho b+3
=>b+3 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Ta có bảng sau:
Vậy b thuộc {-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15}
Trả lời:
Ta có: 12 là bội của b + 3
\(\Rightarrow12⋮b+3\Rightarrow b+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng sau:
Vậy \(b\in\left\{-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\right\}\)thì 12 là bội của b + 3