Cho a,b,c thỏa mãn a.b.c=2018
tính S= 2018/ab+2018a+2018 +b/bc+b+2018 +c/ac+c+1
Tìm x thuộc Z để B=2013x+1/2014x-2014 đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
a,\(x-2xy+x=0=>2x-2xy=0=>2x\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1-y=0\end{cases}\Rightarrow\orbr{\begin{cases}0\\1\end{cases}}}\)
a) xét tg ABH và tg CAI
Ta có : góc BAH = góc ACI= 90 độ - góc IAC
AB = AC
Góc AHB = góc CIA= 90 độ
nên tg ABH = tg CAI ( cạnh huyền - cạnh góc vuông )
=> BH = AI
b) ta có : BH = AI ( chứng minh câu a )
AD + BH = IC + AI = AB = AC
=> BH2 + CI2 = 2AM vuông
c) AM vuông góc với BM
AI vuông góc với BH
=> góc MBH = góc MAI
Xét tg BHM và tg AIM
ta có : BH = AI ( chứng minh câu a )
Góc MBH = góc MAI ( cmt )
BM = AM
nên tg BHM = tg AIM (g.c.g)
=> HM = IM (1)
Góc BMH = góc AMI (2)
từ (1) và (2) ta có :
Tg IMH vuông cân tại M
=> IM là tai phân giác của HIC
Ai thấy đúng tk nha!!!
Ta có
(x+8)/10+(x+7)/11+(x+6)/12=(x+5)/13+(x+4)/14-1
<=>(x+8)/10+1+(x+7)/11+1+(x+6)/12+1=(x+5)/13+1+(x+4)/14-1+2( giải thích là cộng mỗi vế với 3)
<=>(x+18)/10+(x+18)/11+(x+18)/12=(x+18)/13+(x+18)/14
<=>(x+18)/10+(x+18)/11+(x+18)/12-(x+18)/13-(x+18)/14=0
<=>(x+18)(1/10+1/11+1/12-1/13-1/14)=0
Hai số nhân lại bằng không khi và chỉ khi một trong hai số bằng không hoặc cả hai số bằng không mà
1/10+1/11+1/12-1/13-1/14 khác không
<=>x+18=0
<=>x=-18
Nhớ k mik nhé
a) \(x-2xy+x=0\Leftrightarrow2x-2xy=0\)
\(\Leftrightarrow2x\left(1-y\right)=0\Leftrightarrow\hept{\begin{cases}2x=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
tổng 3 góc 1 \(\Delta=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\) mà \(\widehat{A}-\widehat{B}=60^o\Rightarrow\widehat{A}=\widehat{B}+60^o\) mà ta lại có tam giác abc cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\)
ta thay \(\widehat{A},\widehat{C}\)bởi các phép tính trên lần lược vào biểu thức
\(\Rightarrow\widehat{B}+60^o+\widehat{B}+\widehat{B}=180^o\Rightarrow3\widehat{B}=180-60=120\)
ta đã có ở trên\(\widehat{A}=\widehat{B}+60^o\Rightarrow\widehat{A}=40^o+60^o=100^o\)
\(\widehat{C}=\widehat{B}=40^o\)
vậy các góc của tam giác lần lượt là 100,40,40 độ
nhớ k. cho chị nha
học tốt
\(\frac{2018}{ab+2018a+2018}+\frac{b}{bc+a+2018}+\frac{c}{ac+c+1}\)
\(a.b.c=2018\Rightarrow a,b,c\ne0\)
Ta có \(\frac{2018}{ab+2018a+2018}\Rightarrow\frac{2018}{b+2018+bc}\)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{2018+bc+b}\)
\(\Rightarrow S=\frac{2018}{b+2018+bc}+\frac{b}{bc+b+2018}+\frac{bc}{2018+bc+b}=\frac{2018+b+bc}{b+2018+bc}=1\)
để nghĩ tiếp
làm tiếp
\(\frac{2013x+1}{2014x-2014}=\frac{2013\left(x-1\right)+2014}{2014\left(x-1\right)}=\frac{2013}{2014}+\frac{1}{x-1}\)
\(B_{max}\Leftrightarrow\frac{1}{x-1}max\)
+) Nếu x >1 thì x-1 >0 \(\Rightarrow\frac{1}{x-1}>0\)
+) Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét x > 1 ta có
\(\frac{1}{x-1}max\Rightarrow x-1\)là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\)
Vậy \(Bmax=1\frac{2018}{2019}\Leftrightarrow x=2\)