K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

21 tháng 4 2018

(x-1)(x+2)(x+3)(x+6) 
=[(x-1)(x+6)][(x+2)(x+3)] 
=(x^2+5x-6)(x^2+5x+6) 
=(x^2+5x)^2-36>=-36 
=>min=-36<=>x=0 hoặc x=-5

21 tháng 4 2018

\(VìA=(x-1).(x+2).(x+3).(x+6)\)\(\Rightarrow\)\(A=x.(-1+2+3+6)\)\(\Rightarrow\)\(A=x.10\)

Vì A nhỏ nhất \(\Rightarrow\)A=0 mà A=x.10\(\Rightarrow\)0=x.10\(\Rightarrow\)x=0\(:\)10\(\Rightarrow\)x=0

\(Vậy\) \(A\) \(nhỏ\) \(nhất\) \(khi\) x=0

21 tháng 4 2018

\(A=2x^2-8x+1\)

\(A=2\left(x^2-4x+\frac{1}{2}\right)\)

\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)

\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)

\(A=2\left(x-2\right)^2-7\ge7\forall x\)

dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy MIN A = 7 khi \(x=2\)

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)

dấu \("="\)  xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)

vậy MIn B = \(\frac{9}{5}\)  khi \(x=\frac{-2}{5}\)

còn lại làm tương tự nhé 

21 tháng 4 2018

Ta có : 

\(A=2x^2-8x+1\)

\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)

\(A=2\left(x^2-4x+4\right)-7\)

\(A=2\left(x-2\right)^2-7\ge-7\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

21 tháng 4 2018

Bạn xem lại câu b có thiếu gì ko nhé!!!

a) Xét \(a^2+b^2-2ab\)

     \(\Leftrightarrow\left(a-b\right)^2\ge0\)(ĐPCM)

c) Xét \(a^2+b^2+2-2\left(a+b\right)=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)

                                                         \(=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)

\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)(ĐPCM)

21 tháng 4 2018

De bai sai ha bn

21 tháng 4 2018

mong bạn chấp nhận lời kb

21 tháng 4 2018

Gọi vận tốc dự định ban đầu là x (x>0,km/h)

Gió mỗi giờ đi chậm 10 kilômét nên vận tốc thực tế là x+10

Doi 2h30 phút = 2,5 giờ

Thời gian thực tế đi đến a b là 2,5+50h=10/3h

Theo bài ra ta có phương trình

2,5x=10/3(x+10)

Giải phương trình ra ta được x = 40

Về quãng đường AB dài là40x2,5=100km

21 tháng 4 2018

\(\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\) BĐT Cô-si

Tương tự suy ra đpcm

21 tháng 4 2018

\(9a^2+b^2-6a+2b+5\)

\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)

\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)

Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)

\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)

\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)

21 tháng 4 2018

nam : 90 công dân

nữ : 18 công dân

21 tháng 4 2018

Bạn giải cụ thể giúp mình được k ạ