K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

a, tam giác vuông ABD tại D có: AM=MB

suy ra MD là đường trung tuyến của tam giác ABD

suy ra MD=MB=MA

suy ra tam giác MBD cân tại M

          tam giác MAD cân tại M

30 tháng 1 2019

xét tam giác vuông ABD có DM là trung tuyến thuộc cạnh huyền nên MD = MA = MB = \frac{1}{2}AB21​AB

vậy \Delta MBD,\Delta MADΔMBDMADcân tại M ; vì \widehat{A}=60^oA=60o( gt ) nên \Delta MADΔMADđều

b) \Delta AENΔAENcó AE = AN ( gt ) \Rightarrow\Delta AEN⇒ΔAENcân 

Lại có \widehat{A}=60^oA=60o( gt ) \Rightarrow\Delta AEN⇒ΔAENđều \Rightarrow⇒EN = NA = NC = \frac{1}{2}AC21​AC

\Delta EACΔEACcó trung tuyến EN = \frac{1}{2}AC21​ACnên \Delta EACΔEACvuông tại E hay CE⊥ABCEAB

30 tháng 1 2019

tu ve hinh : 

a, AC = AB => tamgiac ABC can tai A (dn)

=> goc ABC  = goc ACB (tc) 

xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)

=>  tam giac ABH = tamgiac ACH (ch - gn)            (1)

b, tamgiac AHB vuong tai H do AH | BC (gt)

=> AB2 = AH2 + BH2 

 (1) =>  BH  = HC ma BC = 6 (gt)=> BH = 3

BA = 5 (gt)

=> AH = 52 - 32

=> AH = 16

=> AH = 4 do AH  > 0

c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)

goc ABC = goc ACB (cmt) va BH = HC (cmt)

=>  tamgiac BMH = tamgiac NCH (ch - gn) 

=> MH = HN (dn)

=> tamgiac MNH can tai H (dn)

d, cm theo truong hop ch - gn di, moi tay qa

1 tháng 2 2019

                       Giải

( Bạn tự vẽ hình nhé )

a, \(AB=AC\)  \(\Rightarrow\)\(\Delta ABC\)  cân tại A 

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) 

Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\)  do \(AH\perp BC\)

\(\Delta ABH=\Delta ACH\)              (1) [ đpcm]

b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)

 \(\Rightarrow AB^2=AH^2+BH^2\)

Từ  (1) suy ra  BH  = HC mà BC = 6 nên BH = 3

\(\Rightarrow\)BA = 5 

\(\Rightarrow AH^2=5^2-3^2\)

\(\Rightarrow AH^2=25-9\)

\(\Rightarrow AH^2=16\)

\(\Rightarrow AH=\sqrt{16}\)

\(\Rightarrow AH=4cm\)

\(\Rightarrow\) AH = 4cm do AH  > 0

c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)

 \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)

\(\Rightarrow\Delta BHM=\Delta NCH\)  

\(\Rightarrow MH=HN\)

\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)

d, ...

30 tháng 1 2019

TA CÓ:\(a^3-13a=a\left(a^2-13\right)\)

                                \(=a\left(a^2-1-12\right)\)  

                                \(=a\left(a-1\right)\left(a+1\right)-12a\)

   

Ta có:a(a-1)(a+1)là tích ba stn liên tiếp nên tồn tại ít nhất một bội số của 2 =>a(a-1)(a+1)chia hết cho 2

                                     tồn tại một bội số của 3 nên a(a-1)(a+1) chia hết cho 3=>a(a-1)(a+1)chia hết cho 6

mà 12a chia hết cho 6

\(\Rightarrow a^3-13a⋮6\)

30 tháng 1 2019

Đặt nhân tử chung a ra rồi tách -13 thành -1-12 đó bạn!

Chúc bạn hok tốt

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

30 tháng 1 2019

Đang ế ngạt thở ra 

30 tháng 1 2019

Cám ơn bạn 

Happy New Year

30 tháng 1 2019

\(\left|x-2018\right|+x=2018\)

\(\Rightarrow\left|x+2018\right|=2018-x\)

\(\Rightarrow x+2018\le0\)

\(\Rightarrow x\le-2018\)

Vậy \(x\in R;x\le-2018\)

30 tháng 1 2019

\(\left|x-2018\right|+x=2018\)

\(\Rightarrow\left|x-2018\right|=2018-x\)

\(\Rightarrow x\le2018\)

Vậy ..........

30 tháng 1 2019

Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)

\(\Rightarrow VT\ge2+0+5=7=VP\)

Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)