phân tích ý nghĩa của địa hình đối với đời sống và sản xuất của người dân châu á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: $\widehat{BAE}=\widehat{BAC}-\widehat{EAC}$
$=90^0-\frac{1}{2}\widehat{HAC}(1)$
$\widehat{AEB}=\widehat{EAC}+\widehat{ECA}$
$=\frac{1}{2}\widehat{HAC}+(90^0-\widehat{HAC})$
$=90^0-\frac{1}{2}\widehat{HAC}(2)$
Từ $(1); (2)\Rightarrow \widehat{BAE}=\widehat{AEB}$
$\Rightarrow \triangle ABE$ cân tại $B$
Lời giải:
a. Xét tam giác $AMC$ và $KMB$ có:
$MC=MB$ (do $M$ là trung điểm $BC$)
$AM=KM$ (gt)
$\widehat{AMC}=\widehat{KMB}$ (đối đỉnh)
$\Rightarrow \triangle AMC=\triangle KMB$ (c.g.c)
và $\widehat{ACM}=\widehat{KBM}$
Mà 2 góc này ở vị trí so le trong nên $AC\parallel BK$
b.
Xét tam giác $ABM$ và $KCM$ có:
$BM=CM$
$AM=KM$
$\widehat{AMB}=\widehat{KMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle KCM$ (c.g.c)
$\Rightarrow \widehat{ABM}=\widehat{KCM}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CK$
Thời gian xe đi hết nửa quãng đường đầu là: \(\dfrac{S}{2}\) : 40 = \(\dfrac{S}{80}\)
Thời gian xe đi hết nửa quãng đường sau là: \(\dfrac{S}{2}\) : 60 = \(\dfrac{S}{120}\)
Thời gian người đó đi trên cả quãng đường là:
\(\dfrac{S}{80}\) + \(\dfrac{S}{120}\) = \(\dfrac{S}{48}\)
Vận tốc trung bình của người đó trên cả quãng đường là:
S : \(\dfrac{S}{48}\) = 48 (km/h)
Kết luận:..
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2.2+3.\left(-3\right)+5.5}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(=>x=\dfrac{3}{10}.2=\dfrac{3}{5}\\ y=\dfrac{3}{10}.\left(-3\right)=-\dfrac{9}{10}\\ z=\dfrac{3}{10}.5=\dfrac{3}{2}\)
èds