K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

bạn mà hỉu thì mọi ng hỉu!

12 tháng 5 2017

chịu thôi mình chẳng hiểu là gì mà bạn nên đăng những câu hỏi liên quan đến toán học thì hơn đó

12 tháng 5 2017

minh hoc lop 10 k cho minh roi minh giup

12 tháng 5 2017

đấy cũng gọi là câu trả lời à!

12 tháng 5 2017

Bằng 45 nhé bạn

12 tháng 5 2017

(1+9)+(2+8)+(3+7)+(4+6)+5

=10+10+10+10+5

=45 nhá

12 tháng 5 2017

1 x 1  = 1 k nha

12 tháng 5 2017

Ta có:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)

Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:

\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

Tương tự ta có:

\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)

Cộng 3 cái trên vế theo vế ta được

\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

\(\Rightarrow\)ĐPCM

12 tháng 5 2017

demonstrate that \(a^3+b^3\ge ab\left(a+b\right)\)

12 tháng 5 2017

a/ \(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\sqrt{x^2}-1+\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{1}{\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}-1}{1}\right)\)

=> \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}\)

b/ \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}=\sqrt{x}-1\)

<=> \(4\sqrt{x}=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

<=> \(4\sqrt{x}=x-1\). Bình phương 2 vế, ta được:

<=> 16x=(x-1)2

<=> 16x=x2-2x+1

<=> x2-18x+1=0

\(\Delta'=81-1=80=>\sqrt{\Delta'}=4\sqrt{5}\)

=> \(x_1=9-4\sqrt{5}\)

\(x_2=9+4\sqrt{5}\)

12 tháng 5 2017

TXĐ: D=R

\(f\left(-2\right)=\left(-2\right)^2=4\)

12 tháng 5 2017

Gọi \(OH=x\Rightarrow HD=\sqrt{R^2-x^2}\)

\(S_{ODH}=\frac{1}{2}.OH.HD=\frac{1}{2}x.\sqrt{R^2-x^2}\le\frac{1}{2}.\frac{x^2+\left(R^2-x^2\right)}{2}=\frac{R^2}{4}\)

Vậy \(maxS_{ODH}=\frac{R^2}{4}\) khi \(x=\sqrt{R^2-x^2}\Rightarrow x=\frac{R}{\sqrt{2}}\Rightarrow OH=\frac{OA}{\sqrt{2}}\)

14 tháng 5 2017

chu vi mà cô . có phải diện rích đâu ạ !