Giải gấp giúp mình với....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)
Làm tương tự ta được
\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh.
Ta có:
\(7x^2+64y^2+45z^2-24\left(xy+yz+zx\right)\)
\(=\frac{1}{7}\left(\left(49x^2+144y^2+144z^2-168xy-168zx+288yz\right)+\left(304y^2+171z^2-456yz\right)\right)\)
\(=\frac{1}{7}\left(\left(7x-12y-12z\right)^2+19\left(4y-3z\right)^2\right)\ge0\)
\(\Rightarrow P\ge24\left(xy+yz+zx\right)=24.\frac{2}{3}=16\)
Bấm nhầm nút gửi
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)
\(\Rightarrow A\ge-2\sqrt{5}\) (1)
Bình phương 2 vế ta được
\(5x^2-4Ax+A^2-5=0\)
Để phương trình theo x có nghiệm thì
\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)
\(\Leftrightarrow100-16A^2\ge0\)
\(\Leftrightarrow A\le\frac{5}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
Để biểu thức tồn tại được thì :
a) 4 - x2 \(\ge\)0
=> (2 - x)(2 + x) \(\ge\)0
=> \(\hept{\begin{cases}x\ge-2\\x\le2\end{cases}}\Rightarrow-2\le x\le2\)
dễ tek,,,,bạn cứ cho những cái trong căn lớn hơn bằng 0 là xong mà
áp dụng nè \(\sqrt{a^2+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{2}}=\frac{a+b}{\sqrt{2}}\)
bđt đó dễ CM nha,,,,dùng hằng đẳng thức 1 là CM đc
theo mik thì cứ cộng 2 vế pt là ok nhá,,,tí nó ra hình như là (x+y)^2-4(x+y)=-3 ấy,,kinh ko,,
It feels nobody ever knew me until you knew me
Feels nobody ever loved me until you loved me
Feels nobody ever touched me until you touched me
a. Do ABCM là tứ giác nội tiếp nên \(\widehat{AMx}=\widehat{ABC}\)
Lại do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{AMB}\) (Góc nội tiếp cùng chắn cung AB)
Vậy nên \(\widehat{AMB}=\widehat{AMx}\) hay MA là phân giác góc \(\widehat{BMx}.\)
b. Do tam giác ABC cân tại A nên AI là phân giác góc BAC. Vậy thì cung BI = cung CI hay góc \(\widehat{BMI}=\widehat{IKC}\)
Từ đó suy ra \(\widehat{DMI}=\widehat{IKD}\) (Cùng phụ với hai góc trên)
Lại có do MD = MC \(\Rightarrow\widehat{MDK}=\widehat{MCK}=\widehat{MIK}\)
Tứ giác DMIK có các góc đối bằng nhau nên nó là hình bình hành.
c. Do MA là phân giác góc BMx nên MA thuộc đường phân giác góc DMC.
Lại có MD = MC nên MA chính là đường trung trực của DC.
Vậy thì DA = AC, hay D luôn thuộc đường tròn tâm A, bán kính AC.
nhiều dữ!^_6