Cho tam giác ABC có BC=60cm, góc B=50 độ, góc C =37 độ. tính AB, AC và diện tích tam giác ABC.
em đang cần gấp ạ, mong mọi người giúp đỡ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(x^2-2x-3-\left(x+1\right)\sqrt{x^2+3}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)-\left(x+1\right)\sqrt{x^2+3}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3-\sqrt{x^2+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3-\sqrt{x^2+3}=0\end{cases}}\)
TH1: \(x+1=0\Leftrightarrow x=-1\)
TH2: \(x-3-\sqrt{x^2+3}=0\Leftrightarrow x-3=\sqrt{x^2+3}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x^2+3=x^2-6x+9\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=1\end{cases}}\left(l\right)\)
Vậy phương trình có nghiệm x = -1.
làm xong rồi thì please_sign
áp dụng bđt huyền thoại \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) =\(\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\)
mà \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\) (tụ cm nhé )
\(\Rightarrow\ge\frac{\left(a+b+c^2\right)}{\frac{\left(ab+bc+ac\right)^2}{3}}=\frac{3\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}{\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)}\)
m,à \(\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2+ab+bc+ac+ab+bc+ac\right)^3}{3^3}\)
=\(\frac{\left(\left(a+b+c\right)^2\right)^3}{27}=27\)
\(\Rightarrow vt\ge\frac{27\left(a^2+b^2+c^2\right)}{27}=a^2+b^2+c^2\)
dau = khi a=b=c=1
A B C H 50 37 O O
Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)
Xét tam giác vuông ABH có: \(AH=tan50^o.x\)
Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)
Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)
\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)
\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\) (cm)
Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\) (cm)
\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\) (cm)
\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\) (cm)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)