1) Tìm x,y,z biết:
2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
áp dụng hằng đẳng thức : (a+b+c)2 và (a-b-c)2 và (a+b-c)2
2) Tìm GTNN
A= 2x2+4y2+4xy+2x+4y+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n(n+1)(n+2) là hs 3 số nguyên liên tiếp nên chia hết cho 3
n(n+1) là h 2 số nguyên liên tiếp nên chia hết cho 2
Mà (2,3)=1
Do đó n(n+1)(n+2) chia hết cho 6 hay n^2(n+1)+2n(n+1) chia hết cho 6
b, \(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left(4n^2-4n+1-1\right)=4n\left(n-1\right)\left(2n-1\right)\)
Vì \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\)
n(n-1) là h 2 số nguyên liên tiếp nên chia hết cho 2
Do đó \(4n\left(n-1\right)\left(2n-1\right)⋮2.4=8\)
Vậy...
khác nhau là một cái là thứ tạo nên mình ,nguyên tố là các hệ như : lửa ...
khác nhau ở chữ nữa nha
Đay là ý kiến của em sai thì đừng k sai
Toán khá nhưng ko biết toán 8 nên em giới thiệu cho chi một chị lớp tám là hsg của trường nhá
\(a)\) Đặt \(A=-9x^2-12x+5\) ta có :
\(-A=9x^2+12x-5\)
\(-A=\left(9x^2+12x+16\right)-21\)
\(-A=\left(3x+4\right)^2-21\ge-21\)
\(A=-\left(3x+4\right)^2+21\le21\)
Dấu "=" xảy ra khi và chỉ khi \(-\left(3x+4\right)^2=0\)
\(\Leftrightarrow\)\(3x+4=0\)
\(\Leftrightarrow\)\(3x=-4\)
\(\Leftrightarrow\)\(x=\frac{-4}{3}\)
Vậy GTLN của \(A\) là \(21\) khi \(x=\frac{-4}{3}\)
Chúc bạn học tốt ~
A, Đặt \(B=-10x^2-12x+33\)
\(=-10\left(x^2+\frac{6}{5}x-\frac{33}{10}\right)\)
\(=-10\left(x^2+\frac{6}{5}x+\left(\frac{3}{5}\right)^2-\frac{183}{50}\right)\)
\(=-10[\left(x+\frac{3}{5}\right)^2-\frac{183}{50}]\)
\(=-10\left(x+\frac{3}{5}\right)^2+\frac{183}{5}\le\frac{183}{5}\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+\frac{3}{5}\right)^2=0\Leftrightarrow x=-\frac{3}{5}\)
\(x^2+3x-10\)
\(=x^2-2x+5x-10\)
\(=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
hk tốt
^^
1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0
<=>(x+y+z)2+(x+5)2+(y+3)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)
2, A=2x2+4y2+4xy+2x+4y+9
=(x2+4xy+4y2)+(2x+4y)+x2+9
=[(x+2y)2+2(x+2y)+1]+x2+8
=(x+2y+1)2+x2+8
Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)
\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi x=0,y=-1/2
Vậy Amin = 8 khi x=0,y=-1/2
Bài 1:
Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì 3 vế trên đều dương ,nên ta có
\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)
Vậy ...........................................................................................................................