Giải phương trình:\(\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.How far is it from your house to school ?
1.It is not very far to go to the station railway
1. It's very unusual for a military campaign to have been fought with so little loss of life.
=> Seldom has a military campaign been fought with so little loss of life.
2. It's unusal for the interior of the island to be visited by tourists.
=> Seldom is the interior of the island visited by tourists.
3. The existence of extraterrestrial is not confirmed by the report.
=> In no way is the existence of extraterrestrial life confirmed by the report.
c3; Đảo ngữ với " Not"
1. He is my friend as well as yours.
=> Not only is he your friend, but he’s mine too.
2.Burglars stole a thousand pounds' worth of electrical goods, and left the flat in an awful mess.
=> Not only did the burglars steal a thousand pounds’ worth of electrical goods, they also left the flat in an awful mess.
3. You will enhance your posture and improve your acting ability on this course.
=> Not only will you enhance your posture but you will also improve your acting ability on this course.
c4: Đảo ngữ vs " Only"
1. It wasn't until last week that the Agriculture Minister admitted defeat
=> Only until last week did the Agriculture Minister admit defeat.
2. They didn't get round to business until they had finished eating.
=> Only after they had finished eating did they get round to business.
3. They had to wait for 12 hours before their flights left.
=> Only after they had waited for twelve hours did their flight leave.
\(a)5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=12-5-6\)
\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
a) 5-(x-6)=4(3-2x)
<=>5-x-6=12-8x
<=>-x+8x=2-5-6
<=>7x=1
<=>x=1/7
A D C E O B
BO là phân giác của góc B trong tam giác ABE , nên :
\(\frac{AB}{BE}=\frac{AO}{OE}=\frac{3}{2}\), suy ra
\(BE=\frac{AB.2}{3}=\frac{12.2}{3}=8\left(cm\right)\)
BD là phân giác của góc B tromh tam giác ABC , nên :
\(\frac{AB}{BC}=\frac{AD}{DC}\)= 6/7 ,
do đó CE = 14 - 8 = 6 ( cm ) .
AE là phân giác của góc A trong tam giác ABC nên , :
\(\frac{AC}{AB}=\frac{EC}{EB}\)= 6/8 ( 3/4 ) . Vậy AC = \(\frac{AB.3}{4}=\frac{12.3}{4}=9\left(cm\right)\)
Xe máy xuất phát trước ô tô số giờ là: 11-10=1( giờ )
Khi đó thì xe máy đã đi được 45km rồi.
Hiệu vận tốc của ô tô với xe máy là: 60-45=15(km/h)
Số giờ để hai xe gặp nhau là: 45:15=3( giờ )
Vậy, thời gian họ gặp nhau là: 11+3= 14( giờ ) tức 2h chiều
Đ/S: 14h
Gọi thời gian 2 xe gặp nhau là: x (h) (x>0)
qđ của xe máy đến nơi gặp nhau là: ( x - 10 ).45 (km)
qđ của oto đến nơi gặp nhau là: ( x - 11 ).60 (km)
ta có pt: (x-10).45=(x-11).60
<=> 45x-450=60x-660
<=> 210=15x
<=> x = 14
a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)
Đặt a = \(8x^2+10x+3\)
\(\left(8a+1\right)a-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)
mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)
\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\frac{bc}{a}+\frac{ac}{b}\ge2.\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2.c\\\frac{bc}{a}+\frac{ab}{c}\ge2.\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\\\frac{ac}{b}+\frac{ab}{c}\ge2.\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\end{cases}}\Leftrightarrow2.\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)( tự giải rõ ra nhé )
BĐT AM-GM:
\(a+a_1+a_2+...+a_n\ge n\sqrt[n]{a.a_1.a_2.....a_n}\)
Dấu " = " xảy ra \(\Leftrightarrow a=a_1=a_2=...=a_n\)
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
\(\Leftrightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}\ge a+b+c\)
\(\Leftrightarrow abc.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge a+b+c\)
Giải tiếp nhé
P/s: nói trước là tớ ko chắc đúng đâu nhé ;)
Đặt \(A=x^4-x^2+2x+2\)
\(A=x^2\left(x^2-1\right)+2\left(x+1\right)\)
\(A=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(A=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(A=\left(x+1\right)\left(x^3-x^2+2\right)\)
\(A=\left(x+1\right)\left(x^3-2x^2+x^2+2\right)\)
\(A=\left(x+1\right)\left[x^2\left(x+1\right)-2\left(x^2-1\right)\right]\)
\(A=\left(x+1\right)\left[x^2\left(x+1\right)-2\left(x-1\right)\left(x+1\right)\right]\)
\(A=\left(x+1\right)\left(x+1\right)\left[x^2-2\left(x-1\right)\right]\)
\(A=\left(x+1\right)^2\left(x^2-2x+2\right)\)
Dễ thấy \(\left(x+1\right)^2\)là số chính phương nên để A là số chính phương thì \(x^2-2x+2\)là số chính phương
Đặt \(x^2-2x+2=k^2\)
\(\Leftrightarrow x^2-2x+1+1-k^2=0\)
\(\Leftrightarrow\left(x-1\right)^2-k^2=-1\)
\(\Leftrightarrow\left(x-k-1\right)\left(x+k-1\right)=-1\)
TH1 :\(\hept{\begin{cases}x-k-1=1\\x+k-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x-k=2\\x+k=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}}\)( thỏa mãn )
TH2 :\(\hept{\begin{cases}x-k-1=-1\\x+k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-k=0\\x+k=2\end{cases}\Leftrightarrow x=k=1}}\)( thỏa mãn )
Vậy x = 1 thì A là số chính phương
\(\text{Giải}\)
\(\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}\)
\(\Leftrightarrow\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}+\frac{x+95}{90}=0\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}\right)=0\)
Dễ thấy thừa số thứ 2 khác 0
nên: x+95=0=>x=-95
Vậy: x=-95
cộng 2 vế với 2 tức là cộng mỗi phân số với 1.Sau đó được mâu sô chung là 95 rồi khử mẫu và làm như bình thường ,.BẠN NHÉ !