K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

a, xét tam giác AMB và tam giác NMC có : 

AM = MN do N là trđ của AM (gt)

MB = MC do M là trđ của BC (Gt)

góc BMN = góc CMA (đối đỉnh)

=> tam giác AMB = tam giác NMC (c-g-c)

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

24 tháng 2 2020

Sửa x(x - y) = 3/10

Ta có: \(\frac{x\left(x-y\right)}{y\left(x-y\right)}=\frac{\frac{3}{10}}{\frac{-3}{50}}\)\(\Rightarrow\frac{x}{y}=\frac{3}{10}.\frac{50}{-3}=-5\)\(\Rightarrow x=-5y\)

Lại có: \(x\left(x-y\right)=\frac{3}{10}\)\(\Rightarrow\left(-5y\right)\left(-5y-y\right)=\frac{3}{10}\)\(\Rightarrow\left(-5y\right)\left(-6y\right)=\frac{3}{10}\)\(\Rightarrow30y^2=\frac{3}{10}\)\(\Rightarrow y^2=\frac{3}{10}\div30=\frac{1}{100}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{1}{10}\\y=\frac{-1}{10}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-5.\frac{1}{10}=-\frac{1}{2}\\x=-5.\left(\frac{-1}{10}\right)=\frac{1}{2}\end{cases}}\)

Vậy....

24 tháng 2 2020

Th1 3x-2<0

=> -(3x-2)=4x+1

=>-3x+2=4x+1

=>2-1=4x+3x

=> 7x=1

=> x=1/7

Th2 : 3x-1 > hoặc bằng 0 ta đc

3x-2=4x+1

=> -3=x

zậy . ... 

hoặc làm cái khác nhá . Mk tự nhiên nghĩ ra cách khác đúng hơn . Nếu cần nhắn tin cho mk nha ##

24 tháng 2 2020

Ta có | 3x - 2 | = 4x + 1

\(\Leftrightarrow\orbr{\begin{cases}3x-2=4x+1\\3x-2=-4x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-4x=1+2\\3x+4x=-1+2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=3\\7x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{7}\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{7};-3\right\}\)

@@ Hc tốt

Chiyuki Fujito

1. Why do you enjoy your hobby?

2. What does Jim usually do in his free time?

3. How often does he play football?

4. Where does he often play volleyball?

1.Why do you enjoy your hobby?

2.What does Jim usually do in hí free time?

3.How often does he play football?

4.Where does he often play volleyball?

\(\Leftrightarrow3.\left(7x^2+1\right)=4.\left(8x^2-2\right)\)

\(\Leftrightarrow21x^2+3=32x^2-8\)

\(\Leftrightarrow21x^2+3-32x^2+8=0\)

\(\Leftrightarrow-11x^2+11=0\)

\(\Leftrightarrow-11\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=1\)

#quankun^^

\(\left(7x^2+1\right):4=\left(8x^2-2\right):3\)

\(\frac{7x^2+1}{4}=\frac{8x^2-2}{3}\)

\(\left(7x^2+1\right).3=\left(8x^2-2\right).4\)

\(21x^2+3=32x^2-2\)

\(21x^2-32x^2=-2-3\)

\(-11x^2=-5\)

\(x^2=\frac{5}{11}\)

\(x^2=\sqrt{\frac{5}{11}}=\frac{\sqrt{55}}{11}\)

24 tháng 2 2020

A B C I H M Xét tam giác IMB và tam giác HMC có :

góc BIM = góc CHM ( = 90 độ )

MI = MH (gt)

góc IMB = góc HMC ( đối đỉnh )

=> Tam giác IMB = tam giác HMC ( g-c-g )

=> MB = MC và góc IBM = góc HCM (1)

Xét tam giác MBC có : MB = MC (cmt)

=> Tam giác MBC cân tại M

=> góc MBC = góc MCB (2)

Từ (1) và (2) => góc ABC = góc ACB

Xét ta giác ABC có : góc ABC = góc ACB (cmt)

=> Tam giác ABC cân tại A (đpcm)

24 tháng 2 2020

Vẽ hình khó quá nên mk xin phép k vẽ nha ^^

M là giao của 2 đường cao BH và CI của tam giác ABC => M là trực tâm của tam giác ABC.

=> AM vuông góc với BC.

       Xét tam giác AMI vuông tại I và tam giác AMH vuông tại H có

                                 AM chung

                            MI = MH( gt)

 => \(\Delta AMI=\Delta AMH\)(cạnh huyền - cạnh góc vuông)

=> \(\widehat{IAM}=\widehat{HAM}\)=> AM là phân giác góc BAC.

 Tam giác ABC có AM là đường phân giác, vừa là đương cao => Tam giác ABC cân tại A( đpcm)

24 tháng 2 2020

A B C O M' M N N'

a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA  có;

^M'AB = ^NBA = 90o 

AB chung

AM' = BN  ( = AC)

=> \(\Delta\)AM'B = \(\Delta\)BNA  

=> AN = BM'

+) Vì AM' = ABN ; AM = BN' ( = BC )

=> AM = BN'

^MAB = ^N'BA = 90o 

=> \(\Delta\)AMB = \(\Delta\)BN'A 

=> AN' = BM 

+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC 

BN = AC 

^MAC = ^CBN ( = 90o )

=> \(\Delta\)AMC = \(\Delta\)BCN 

=> MC = NC 

b)  \(\Delta\)AM'B = \(\Delta\)BNA   ( chứng minh ở a)

=> ^M'BA = ^NAB mà  hai góc này ở vị trí so le trong 

=> AN // BM'

\(\Delta\)AMB = \(\Delta\)BN'A 

=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong 

=> MB // AN'

c) Gọi O là trung điểm của AB 

Xét \(\Delta\)OAM và \(\Delta\)OBN' có:

OA = OB 

^OAM = ^OBN' 

AM  = BN' 

=> \(\Delta\)OAM = \(\Delta\)OBN'  => ^AOM = ^BON'  mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o 

=> M; O; N' thẳng hàng (1)

Tương tự chứng minh được:

\(\Delta\)OAM' = \(\Delta\)OBN 

=> M'; O; N thẳng hàng (2)

Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB

4 tháng 3 2021

Làm sao Nguyễn Linh Chi vẽ được hình như vậy chia sẻ liên kết cho mk vs ạ!

Vd 1: - Người đẹp vì lụa lúa tốt vì phân

      - Cái nết đánh chết cái đẹp

Vd2: - Không thầy đố mày làm nên

         - Học thầy không tày học bạn 

24 tháng 2 2020

Trả lời:

VD1:

+ Học thầy chẳng tày học bạn.

+ Không thầy đố mày làm nên.

VD2:

+ Đi một ngày đàng học một sàng khôn.

+ Không đi thì không biết xứ đông
   Đi thì khốn khổ thân ông thế này.

Còn một số câu nữa như:

VD3:

+ Người đẹp vì lụa lúa tốt vì phân.

+ Cái nết đánh chết cái đẹp

VD4:

+ Ăn vóc học hay.  
+ Có ăn có mặc có khác.

Hok tốt!

Vuong Dong Yet