cho \(1\le a,b\le2\)
cm \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{9}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)
Từ 1 và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)
hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)
P/s tham khảo nha
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{5}+\sqrt{5}+1-1\)
\(\sqrt{2}A=2\sqrt{5}\)
\(A=\sqrt{10}\)
P/s tham khảo nha
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\Rightarrow A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{9-5}\)
\(=6+2\sqrt{4}\)
\(=10\)
Mà \(A>0\Rightarrow A=\sqrt{10}\)
Đặt A là vế trái của BĐT cần chứng minh và ký hiệu m là số bé nhất trong bốn số có ở mẫu của A.Như vậy \(m\ge abcd+1\)và
\(A\le\frac{a}{m}+\frac{b}{m}+\frac{c}{m}+\frac{d}{m}=\frac{a+b+c+d}{m}\le\frac{a+b+c+d}{1+abcd}\)
Vì \(a,b,c,d\in\left[0,1\right]\)nên
\(a+b\le1+ab;c+d\le1+cd;ab+cd\le1+abcd\)
\(\Rightarrow a+b+c+d\le3+abcd\)
vì thế \(A\le\frac{3+abcd}{1+abcd}\le3\)
Vậy Max là 3
có ai có cách giải dễ hiểu hơn ko? bn trên lm như vậy cx đc r nhưng trình bày chưa đc!
Bạn nhân a+b+c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lại với nhau rồi trừ 1 ở mỗi vế, phân tích mẫu ra sẽ đc(a+b)(b+c)(c+a)=0