câu 2
cho biểu thức \(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{8}{x^2-4}\right):\frac{x-1}{x-2}\)
a) với giá trị nào của x thì biểu thức đc xác định
b/hãy rút gọn biểu thức A
c/tìm giá trị của x để biểu thức A cs giá trị =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+3x^2+2x+1.\)
\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left(x^2+x+1\right)\)
\(=\left(x+1\right)^2\left(x+1\right)^2\)
\(=\left(x+1\right)^4\)
Ta có \(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
\(P=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(P=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(P=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Áp dụng bdt Cô-si ( tự làm lười lắm :>)
\(\Rightarrow P=3+2+2+2=9\)
\(\Rightarrow P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
GTNN của P là 9
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)
Áp dụng BĐT Bunhiacopxki
\(\Rightarrow P\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy Min P = 9 <=> a = b = c = 1
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)