"dòng chữ tinh ranh" dc cấu tạo như sau:1 dòng số là luỹ thừa 4 của các số nguyên tố từ nhỏ đến lớn và ko có dấu cách giữa các số. VD:16816252401....
viết chương trình xác định chữ số ở vị trí k(với k>=50000) của dòng chữ tinh ranh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mk nghĩ thôi nhé, mk viết đáp số thôi nha
\(a,b,c=0\)
Trong 3 số a,b,c luôn tồn tại hai số cùng \(\ge\frac{1}{2}\) hoặc \(\le\frac{1}{2}\)Giả sử hai số đó là a và b
Ta có:\(c\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow c\left(4ab-2a-2b+1\right)\ge0\)
\(\Leftrightarrow4abc-2ac-2bc+c\ge0\Leftrightarrow4abc+c\ge2ac+2bc\)
Ta lại có:\(1=a^2+b^2+c^2+2abc\ge2ab+2abc+c^2\)
\(\Leftrightarrow1-c^2\ge2ab\left(c+1\right)\Leftrightarrow1-c\ge2ab\Leftrightarrow1\ge2ab+c\)\(\ge2\sqrt{2abc}\)
\(\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\).Từ \(a^2+b^2+c^2+2abc=1\Rightarrow\)
\(2+c=2a^2+2b^2+2c^2+4abc+c\)\(\ge2a^2+2b^2+2c^2+2ac+2bc\)
\(\Leftrightarrow1+1+c-a^2-b^2-c^2+2ab\ge a^2+b^2+c^2+2ab+2ac+2bc\)
\(\Leftrightarrow\left(a+b+c\right)^2\le1+2abc+c+2ab\le1+\frac{1}{4}+1=\frac{9}{4}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\).Nên GTLN của M là \(\frac{3}{2}\) khi \(a=b=c=\frac{1}{2}\)
dễ
x2 + y2 + xy = x2y2
x2 + xy + y2 - x2y2 = 0
4x2 + 4xy + 4y2 - 4x2y2 = 0
( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1 ( thêm - 1 )
( 2x + 2y )2 - ( 2xy + 1 )2 = -1
( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1
\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)
suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }
SKT-STT giúp mk bài tập này vs
Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\) có giá trị là số nguyên
máy tính mik khó viết nhưng bài này có mẫu chung nên dễ làm mà
bn cứ đưa mẫu ra có x-8 chung đó
sau đó tính tiếp theo bt là ra mà
bạn ơi bạn làm chi tiết ra ik mk thư rôi nhưng không đc
\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)
Cộng theo vế ta được:
\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))
a,\(B=\frac{x^5+x^2}{x^3-x^2+x}\left(ĐKXĐ:x\ne0\right)\)
\(\Rightarrow B=\frac{x^2\left(x^3+1\right)}{x\left(x^2-x+1\right)}=\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x\)
b,Để \(B=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
c,\(B=x^2+x=x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2+\left(-\frac{1}{4}\right)\ge-\frac{1}{4}\)
Vậy MIn = -1/4 <=> x = -1/2
010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001010010110101011010101001001001011010111101000111001010101101010010101011011101001011010101000100101001011010101101010100100100101101011110100011100101010110101001010101101110100101101010100010010100101101010110101010010010010110101111010001110010101011010100101010110111010010110101010001001
pascal bạn oi