K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

à mk bt làm r :v thôi nhé :))

26 tháng 2 2020

Tâ có \(\frac{315-x}{101}+\frac{313-x}{103}-\frac{x-311}{105}-\frac{x-309}{107}=-4\)

\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{x-309}{107}+1=0\)

\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}-\frac{416-x}{107}=0\)

\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}-\frac{1}{107}\right)=0\)

\(\Rightarrow416-x=0\Leftrightarrow x=416\)

#học tốt

26 tháng 2 2020

\(\frac{2}{x}=\frac{5}{y}\Rightarrow\frac{x}{2}=\frac{y}{5}\\ \)

Đặt\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

\(\Rightarrow xy=2k.5k=10k^2\)Mặt khác, \(xy=1000\)\(\Rightarrow10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm10\)

*Với\(k=10\Rightarrow x=20,y=50\)

*Với \(k=-10\Rightarrow x=-20,y=-50\)

                                   Vậy\(\hept{\begin{cases}x=-50,y=-20\\x=50,y=20\end{cases}}\)

theo đề ta có :

xy= 1000 ==> y=1000/x (1)

theo đề ta lại có 2/x =5/y

==> 2y/xy=5x/xy 

==> 2y = 5x (2)

thay (1) vào (2) ta đc 2.1000/x=5x

                                  2000/x = 5x

                                  2000 = 5x^2

                                 400 = x^2

                                 ==>x=20 hoặc x=-20

mà theo đề thì x,y <0 nên loại x= 20 và nhận x=-20

+ x= -20 thì y = 1000/-20= -50

 vậy cặp số x , y thỏa mãn là 

x= -20 và y = -50

k cho mk nha 

                                 

26 tháng 2 2020

a) Xét 2 tam giác ta có :

Góc AHB=AHC (= 90 độ )

AH chung

AB = AC ( vì tam giác ABC cân )

=> 2 tam giác bằng nhau

=> BH=HC

=> AH vừa là đường cao vừa là đg trung tuyến đồng thời là tia phân giác của góc BAC

b) Xét tam giác ABH vuông tại H, áp dụng đli Py-ta-go ta có:

BH^2 + AH^2= BA^2

hay 8^2 + AH^2= 10^2

=> AH = 6 (cm)

c)  Trong tam giác ABC đều có E là trung điểm của AC => BE là đg cao

Mà AH và BE là 2 đg cao cắt nhau tại G => G là trực tâm

=> GH = 1/3. AH => GH = 1/3 . 6 = 2 (cm )

d) Vì Hx // AC => Góc CEB = AFC (so le trong)

=> CF cũng là đg cao của tam giác ABC

=> 3 điểm C, G, F thẳng hàng

18 tháng 3 2020

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(do ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

BAHˆ=CAHˆBAH^=CAH^(hai góc tương ứng)

mà tia AH là tia nằm giữa của hai tia AB,AC

nên AH là tia phân giác của BACˆBAC^(đpcm)

b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

AB2=AH2+BH2AB2=AH2+BH2

hay 102=AH2+82102=AH2+82

⇒AH2=102−82=36⇒AH2=102−82=36

⇒AH=36−−√=6cm⇒AH=36=6cm

Vậy: AH=6cm

c) Ta có: ΔABH=ΔACH(cmt)

⇒HB=HC(hai cạnh tương ứng)

mà H nằm giữa B và C

nên H là trung điểm của BC

Xét ΔABC có

AH là đường trung tuyến ứng với cạnh BC(do H là trung điểm của BC)

BE là đường trung tuyến ứng với cạnh AC(do E là trung điểm của AC)

AH∩BE={G}AH∩BE={G}

Do đó: G là trọng tâm của ΔABC(đ/n)

AG=AH⋅23=6⋅23=4cmAG=AH⋅23=6⋅23=4cm

Ta có: AG+GH=AH(do A,G,H thẳng hàng)

hay GH=AH=AG=6-4=2cm

Vậy: GH=2cm

d) Ta có: BAHˆ=CAHˆBAH^=CAH^(cmt)

và FHAˆ=CAHˆFHA^=CAH^(so le trong, AC//HF)

nên BAHˆ=FHAˆBAH^=FHA^

hay FAHˆ=FHAˆFAH^=FHA^

Xét ΔFAH có FAHˆ=FHAˆFAH^=FHA^(cmt)

nên ΔFAH cân tại F(định lí đảo tam giác cân)

⇒FH=FA(1)

Ta có: ABCˆ=ACBˆABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

mà FHBˆ=ACBˆFHB^=ACB^(đồng vị, HF//AC)

nên ABCˆ=FHBˆABC^=FHB^

hay FBHˆ=FHBˆFBH^=FHB^

Xét ΔFHB có FBHˆ=FHBˆFBH^=FHB^(cmt)

nên ΔFHB cân tại F(đl đảo của tam giác cân)

⇒FH=FB(2)

Từ (1) và (2) suy ra AF=BF

mà F nằm giữa A và B

nên F là trung điểm của AB

Xét ΔABC có

CG là đường trung tuyến ứng với cạnh AB(do G là trọng tâm của ΔABC)

CF là đường trung tuyến ứng với cạnh AB(do F là trung điểm của AB)

mà CG và CF có điểm chung là C

nên C,G,F thẳng hàng(đpcm)

hình tự vẽ nhé

a) xét tam giác ABM và tam giác DCM có :

BM = CM (vì M là trung điểm BC )

MA = MD ( gt )

góc BMA = góc DMC ( đối đỉnh )

==> tam giác ABM - tam giác DCM ( c-g-c ) (đpcm)

b ) vì tam giác ABM = tam giác DCM ( câu a  ) nên ta có góc ABM =  góc MCD ( góc tương ứng )

mà góc ABM và góc MCD nằm ở vị trí so le trong 

==> AB // CD ( đpcm )

c) ta có tam giác ABM = tam giác DCM ( câu a )

==> AB = CD ( cạnh tương ứng ) (1)

xét tam giác ABC vuông tại góc A nên ta có:

BC^2 = AC^2 + AB^2 ( Py-ta-go) <=> AB^2 = BC^2 -AC^2

                                   hay AB^2 = 10^2 - 8^2 = 100 - 64 = 36

==> AB = căn bậc hai của 36 = 6 (cm) (2)

từ (1) và (2) ==> CD = 6 cm ( đpcm )

k cho mình nha cực lắm đó

26 tháng 2 2020

A= 75. (42004+.......+4+1) + 25

   = 25 . (4-1) . (42004+.....+4+1) +  25

   = 25.[4.(42004+......+4+1) - (42004+......+4+1)] + 25

   = 25.[ (4+ 42+........+ 42005 ) - ( 1+ 4 +........+42004)] + 25

   = 25.(42005 - 1) + 25 

   = 25. 42005- 25 +25

   = 25. 42005

   = (25. 4). 42004

    = 100. 22004

Mà 100 chia hết cho 100 => 100. 22004 chia hết cho 100 

                                         => A chia hết cho 100 ( đccm)

26 tháng 2 2020

ĐÂY LÀ TOÁN LỚP 6 !

26 tháng 2 2020

ĐÂY LÀ TOÁN 6:

26 tháng 2 2020

a) Ta có : \(\orbr{\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}}\)

=> \(\left(x+20\right)^{100}+\left|y+4\right|\ge0\)

Do đó \(\left(x+20\right)^{100}=0\)=> \(x=-20\)

\(y+4=0\Rightarrow y=-4\)

Vậy x = -20 và y = -4

b) \(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)

=> \(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC