Giải phương trình: \(\frac{6-\frac{6}{4+\frac{3x}{3+x}}}{x}=\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Vì ABCD là hình thang
\(\Rightarrow AB//CD\)
\(\Rightarrow AB//DE\)
\(\Rightarrow\widehat{A}_1=\widehat{E}_1\)( so le trong)
và \(\widehat{D_1=\widehat{B_1}}\)( slt )
Xét \(\Delta AIB\)và \(\Delta EIB\)có :
\(\widehat{A}_1=\widehat{E_1}\)( cmt)
\(BI:\)Cạnh chung
\(\widehat{B_1}=\widehat{D_1}\)(cmt )
Do đó : \(\Delta AIB=\Delta EIB\left(g.c.g\right)\)
\(\Rightarrow IA=IB\)( cặp cạnh tương ứng ) (*)
+) Vì AB // CD ( GT )
=> AB // EC
=> ABCE là hình thang
Xét \(\Delta BEC\)và \(\Delta BEA\)có :
\(\widehat{E_2}=\widehat{B_{1,2}}\)( soletrong)
\(BE:\)cạnh chung
\(\widehat{E_3}=\widehat{B_3}\)(sl)
Do đó : \(\Delta BEC=\Delta BEA\left(g.c.g\right)\)
\(\Rightarrow BC=BA\)( 2 cạn tương ứng ) (1)
Mà \(BC=BE\)( GT ) (2)
từ (1) và (2)
\(\Rightarrow BA=BE\)
\(\Rightarrow\Delta ABE\)Cân
Xét \(\Delta\)cân \(ABE\)có :
\(IA=IE\)( chứng minh trên ) (1)
\(BI\perp AE\)( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao ) (2)
Từ (1) và (2)
=> Hai điểm A và E đối xứng với nhau qua I ( đpcm)
\(x^3-6x^2-19x+84=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)-\left(28x-84\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)-28\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x-28\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2-3x-28=0\end{cases}}\)
Ta có : \(x^2-3x-28=0\)
\(\Leftrightarrow\left(x^2-7x\right)+\left(4x-28\right)=0\)
\(\Leftrightarrow x\left(x-7\right)+4\left(x-7\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{3;-4;7\right\}\)
hình như mỗi người chỉ dc k 3 lần thôi mà ,đúng ko???
Đúng thì tớ nhé mn! (^O^)