cho tam giác nhọn ABC có đường cao AH.Gọi E,F lần lượt là điểm đối xứng của H qua các cạnh AB,AC.Gọi M,N lần lượt là giao điểm của EF với AB ,AC .CM MC vuông góc với AB và NB vuông góc với AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x2 - 5y2 - x - y
<=> 5(x2 - y2) - (x + y
<=> 5(x - y)(x + y) - (x + y)
<=> [5( x - y) - 1](x + y)
\(5x^2-5y^2-x-y\)
\(\left[\left(\sqrt{5}x\right)^2-2.\sqrt{5}x.\frac{1}{2.\sqrt{5}}+\left(\frac{1}{2.\sqrt{5}}\right)^2\right]-\left[\left(\sqrt{5}y\right)^2+2.\sqrt{5}y.\frac{1}{2.\sqrt{5}}+\left(\frac{1}{2.\sqrt{5}}\right)^2\right]\)
\(=\left(\sqrt{5}x-\frac{1}{2.\sqrt{5}}\right)^2-\left(\sqrt{5}y+\frac{1}{2.\sqrt{5}}\right)^2\)
\(=\left(\sqrt{5}x-2.\frac{1}{2.\sqrt{5}}-\sqrt{5}y\right)\left(\sqrt{5}x-\sqrt{5}y\right)\)
tham khảo nhé
\(A=x^2+5x+7\)
\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)
\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(\Leftrightarrow\)\(x=\frac{-5}{2}\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)
Chúc bạn học tốt ~
\(B=6x-x^2-5\)
\(-B=x^2-6x+5\)
\(-B=\left(x^2-6x+9\right)-4\)
\(-B=\left(x-3\right)^2-4\ge-4\)
\(B=-\left(x-3\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTLN của \(B\) là \(4\) khi \(x=3\)
Chúc bạn học tốt ~
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
xy + 1 - x - y
<=> xy - x + 1 - y
<=> x(y - 1) - (y - 1)
<=> (x - 1)(y - 1)
Nếu bạn tìm nghiệm thì:
<=> (x - 1)(y - 1) = 0
<=> \(\orbr{\begin{cases}x-1=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy (x,y) = (1,1)