K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)

\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)

\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)

\(\Leftrightarrow2012,3\le A\le2013,5\)

14 tháng 5 2019

bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?

18 tháng 12 2017

x4+4 

=x+ 4x+ 4 - 4x2 
=(x2+2)2-(2x)2
=(x2+2-2x)(x2+2+2x)

18 tháng 12 2017

x4 + 4

= x4 + 4x2 + 4 - 4x2

= (x2 + 2)2 - (2x)2

= (x2 + 2 - 2x)(x2 + 2 + 2x)

18 tháng 12 2017

a/ Ta có: O là giao điểm 2 đường chéo (gt) => O là trung điểm của  AC và BD => BO = OD

Xét tg DOM và tg BON ta có: BO = OD (cmt); \(\widehat{DOM}=\widehat{BON}\) ( đối đỉnh); \(\widehat{ODM}=\widehat{OBN}\)( so le trong)

=> tg DOM = tg BON (g.c.g) =>> DM = BN

b/  Ta có: AD // BC (vì ABCD là hình vuông) ma M \(\in\)AD va N \(\in\) BC

=> MD // BN mà MD = BN (cmt) =>. Tứ giác BMDN là hình bình hành

17 tháng 12 2017

Áp dụng bđt \(\frac{a}{b+c+d}\le\frac{1}{9}\left(\frac{a}{b}+\frac{a}{c}+\frac{a}{d}\right)\) ta có :

\(\frac{xy}{2x+y}\le\frac{1}{9}\left(\frac{xy}{x}+\frac{xy}{x}+\frac{xy}{y}\right)=\frac{1}{9}\left(2y+x\right)\)

\(\frac{3yz}{2y+z}\le3.\frac{1}{9}\left(\frac{yz}{y}+\frac{yz}{y}+\frac{yz}{z}\right)=\frac{1}{3}\left(2z+y\right)\)

\(\frac{6xz}{2z+x}\le6.\frac{1}{9}\left(\frac{xz}{z}+\frac{xz}{z}+\frac{xz}{x}\right)=\frac{2}{3}\left(2x+z\right)\)

\(\Rightarrow M\le\frac{1}{9}\left(2y+z\right)+\frac{1}{3}\left(2z+y\right)+\frac{2}{3}\left(2x+z\right)=\frac{13}{9}x+\frac{5}{9}y+\frac{12}{9}z\)

\(=\frac{1}{9}\left(13x+5y+12z\right)=\frac{1}{9}.9=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{10}\)

17 tháng 12 2017

bạn ơi hình như tìm min

17 tháng 12 2017

Áp dụng 2 bđt đó là : 1/a+1/b+1/c >= 9/a+b+c và ab+bc+ca <= a^2+b^2+c^2

A >= 9/6+xy+yz+zx >= 9/6+x^2+y^2+z^2 = 9/6+3 = 2

Dấu "=" xảy ra <=> x=y=z=1

Vậy Min A = 1 <=> x=y=z=1

k mk nha

17 tháng 12 2017

\(\left(1+\frac{x}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3-x^2+x-1}\right)\)   \(ĐKXĐ:x\ne\pm1\)

\(=\left(\frac{x^2+1+x}{x^2+1}\right):\left[\frac{\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(=\frac{x^2+x+1}{x^2+1}:\frac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\frac{x^2+x+1}{x^2+1}.\frac{\left(x^2+1\right)\left(x-1\right)}{\left(x-1\right)^2}\)

\(=\frac{x^2+x+1}{x-1}\)

17 tháng 12 2017

 ĐKXĐ : x khác 1

Phân thức = x^2+1+x/x^2+1  : [1/x-1 - 2x/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1 : [x^2+1-2x/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1  : [(x-1)^2/(x-1).(x^2+1)]

 = x^2+x+1/x^2+1 : x-1/x^2+1

 = x^2+x+1/x^2+1 . x^2+1/x-1 = x^2+x+1/x-1

k mk nha