Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M. Đường thẳng vuông góc với OA tại O cắt MB tại C. Chứng minh CM = CO
help zoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: mx-y=6 <=> (d):y=mx-6
3x+my=3 <=> (d'): y= \(\frac{3-3x}{m}\)(m \(\ne\)0)
Xét pt hoành độ giao điểm của (d) và (d'), ta được:
mx-6=\(\frac{3-3x}{m}\)
\(\Leftrightarrow\)\(m^2x-6m=3-3x\)
\(\Leftrightarrow x=\frac{6m+3}{m^2+3}\)
Do đó, y=\(mx-6=\frac{6m+3}{m^2+3}\times m-6=\frac{3m-18}{m^2+3}\)
Khi đó, M\(\left(\frac{6m+3}{m^2+3}+\frac{3m-18}{m^2+3}\right)\)là giao điểm của (d) và (d')
Để M thuộc góc phần tư thứ IV thì
\(\hept{\begin{cases}\frac{6m+3}{m^2+3}>0\\\frac{3m-18}{m^2+3}< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6m+3>0\\3m-18< 0\end{cases}}\)(Vì \(m^2\)+3>0, với mọi m)\(\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m< 6\end{cases}\Leftrightarrow\frac{-1}{2}< m< 6}\)
Vậy.......
M N C A B O E I F x y
a/ C và M cùng nhìn AO dưới 1 góc vuông => C và M thuộc đường tròn đường kính AO => ACOM là tư giác nội tiếp
b/
Xét tg vuông BON có
\(BN=\sqrt{OB^2-ON^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
\(\sin\widehat{OBN}=\frac{ON}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBN}=30^o\)
Ta có \(BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)
Xét tg vuông BOC
\(\sin\widehat{OBC}=\frac{OC}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBC}=30^o\)
\(\Rightarrow\widehat{NBC}=\widehat{OBN}+\widehat{OBC}=30^o+30^o=60^o\)
c/
Ta có
E; F là trung điểm của CM và CN (hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm vuông góc và chia đôi dây cung nối 2 tiếp điểm)
=> EF là đường trung bình của \(\Delta MCN\) => EF//MN (1)
Ta có
\(AM\perp MN;BN\perp MN\) => AM//BN \(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AM}{BN}\) (talet trong tam giác)
Mà \(AM=AC;BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)
\(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AC}{BC}\) (2)
Ta có
\(\widehat{MCN}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(CM\perp AO;CN\perp BO\left(cmt\right)\Rightarrow\widehat{MCN}=\widehat{AOB}=90^o\)
\(\Rightarrow CM\perp AO;BO\perp AO\) => CM//BO
Xét \(\Delta ABO\) có CM//BO \(\Rightarrow\frac{EA}{EO}=\frac{AC}{BC}\) (3)
Từ (2) và (3) \(\Rightarrow\frac{EA}{EO}=\frac{IA}{IN}\)
Nối E với I, xét \(\Delta AON\) có \(\frac{EA}{EO}=\frac{IA}{IN}\) => EI//MN (Talet đảo trong tam giác) (4)
Từ (1) và (4) => EF trung EI (Từ 1 điểm ngoài 1 đường thẳng chỉ duy nhất dựng được 1 đường thẳng // với đường thẳng đã cho)
=> E; I; F thẳng hàng
88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888898888
??????????????????