K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

A B C N M D E

a, xét tam giác AMD và tam giác BMC có :

BM = MA do M là trung điểm của AB (gt)

DM = MC do M là trung điểm của DC (gt)

góc AMD = góc BMC (đối đỉnh)

=> tam giác AMD = tam giác BMC (c-g-c)

b, tam giác AMD = tam giác BMC (câu a)

=> AD = BC (đn)      (1)

     góc ADM = góc MCB (đn) mà 2 góc này so le trong

=> AD // BC (tc)

c, xét tam giác  ANE và tam giác CNB có : 

AN = CN do N là trung điểm của AC (gt)

NE = NB do N là trung điểm của BE (gt)

góc ANE = góc CNB (đối đỉnh)

=> tam giác ANE = tam giác CNB (c-g-c)

=> BC = AE (đn)    (2)

(1)(2) => AE = AD (tcbc)

Mà A nằm giữa E và D 

=> A là trung điểm của DE (đn)

22 tháng 7 2019

A O C D B m n

ON là phân giác góc DOB

Chứng minh:

Ta có: ^DOn = ^COm ( đối đỉnh)

          ^BOn = ^AOm ( đối đỉnh)

Mà ^AOm = ^COm ( Om là phân giác góc AOC)

-> ^DOn = ^BOn 

=> On là phân giác góc DOB

22 tháng 7 2019

                                                 Bài giải
O A B C D m n

Ta có : Hai đường thẳng AB và CD cắt nhau tại O 

\(\Rightarrow\) Sẽ tạo thành hai cặp góc đổi đỉnh 

Mà hai góc đối đỉnh thì bằng nhau \(\Rightarrow\) \(\widehat{AOC}=\widehat{BOD}\) ,   \(\widehat{AOD}=\widehat{COB}\)

Mà On là tia đối của Om ( Om là tia phân giác của góc AOC ) 

\(\Rightarrow\) On là tia phân giác của góc \(BOD\)

22 tháng 7 2019

So sánh:

\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}\) và \(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}\)

Ta có: 

\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}=-\frac{1}{10^{2011}}\left(\frac{9}{10}+19\right)=-\frac{1}{10^{2011}}.\frac{199}{10}\)

\(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}=-\frac{1}{10^{2011}}\left(9+\frac{19}{10}\right)=-\frac{1}{10^{2011}}.\frac{109}{10}\)

Vì \(\frac{199}{10}>\frac{109}{10}\Rightarrow\frac{1}{10^{2011}}.\frac{199}{10}>\frac{1}{10^{2011}}.\frac{109}{10}\Rightarrow-\frac{1}{10^{2011}}.\frac{199}{10}< -\frac{1}{10^{2011}}.\frac{109}{10}\)

Vậy nên A<B

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+..+0

B=0

C=2^100-(2^99+2^98+2^97+...+1)

đặt D=2^99+2^98+2^97+...+1

=>D=2^100-1

=>C=2^100-(2^100-1)=1

21 tháng 7 2019

Ta có : \(\frac{9-x}{7}=\frac{11-x}{9}=1+\frac{2-x}{7}+1+\frac{2-x}{9}=2=>\left(2-x\right)\left(\frac{1}{7}+\frac{1}{9}\right)=0=>2-x=0=>x=2\)

Thế vào tìm đc y và z rồi ra x+y+z nha bạn 

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)