K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(\frac{x}{y}=\frac{1}{3}\) và x - 3y = \(\frac{1}{2}\)

Ta có : \(\frac{x}{y}=\frac{1}{3}\)=> \(\frac{x}{1}=\frac{y}{3}\)=> \(\frac{x}{1}=\frac{3y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{1}=\frac{3y}{9}=\frac{x-3y}{1-9}=\frac{\frac{1}{2}}{-8}=-\frac{1}{16}\)

=> \(\hept{\begin{cases}\frac{x}{1}=-\frac{1}{16}\\\frac{y}{3}=-\frac{1}{16}\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{1}{16}\\y=-\frac{3}{16}\end{cases}}\)

22 tháng 9 2019

xin lỗi mk viết thiếu lak cái đó lak B nha

22 tháng 9 2019

\(\frac{1}{1-\frac{2}{1-\frac{3}{1-\frac{1}{4}}}}=\frac{1}{1-\frac{2}{1-\frac{3}{\frac{3}{4}}}}=\frac{1}{1-\frac{2}{1-4}}=\frac{1}{1-\frac{2}{-3}}=\frac{1}{\frac{5}{3}}=\frac{3}{5}\Rightarrow A=1-\frac{3}{5}=\frac{2}{5}\)

Bài làm

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{1-\frac{1}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{\frac{4}{4}-\frac{1}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{\frac{3}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-3:\frac{3}{4}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-4}}\)

\(A=1-\frac{1}{1-\frac{2}{-3}}\)

\(A=1-\frac{1}{1+\frac{2}{3}}\)

\(A=1-\frac{1}{\frac{3}{3}+\frac{2}{3}}\)

\(A=1-\frac{1}{\frac{5}{3}}\)

\(A=1-1:\frac{5}{3}\)

\(A=1-\frac{3}{5}\)

\(A=\frac{5}{5}-\frac{3}{5}\)

\(A=\frac{2}{5}\)

Vậy \(A=\frac{2}{5}\)

# Học tốt #

22 tháng 9 2019

Em xem lại đề bài nhé!

22 tháng 9 2019

\(\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}=\frac{x+y+z+t}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{77}{\frac{77}{60}}=60\)

Suy ra :

\(\frac{x}{\frac{1}{2}}=60\Rightarrow x=30\)

\(\frac{y}{\frac{1}{3}}=60\Rightarrow y=20\)

\(\frac{z}{\frac{1}{4}}=60\Rightarrow z=15\)

\(\frac{t}{\frac{1}{5}}=60\Rightarrow t=12\)

Vậy \(x=30;y=20;z=15;t=12\)

Chúc bạn học tốt !!!

20 tháng 9 2019

\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)

\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)

\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)

\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)

\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)

\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi

\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)

2.a, \(2^6=\left[2^3\right]^2=8^2\)

Mà 8 = 8 nên 82 = 82 hay 26 = 82

b, \(5^3=5\cdot5\cdot5=125\)

\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)

Mà 125 < 243 nên 53 < 35

c, 26 = [23 ]2 = 82

Mà 8 > 6 nên 82 > 62 hay 26 > 62

d, 7200 = [72 ]100 = 49100

6300 = \(\left[6^3\right]^{100}\)= 216100

Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300