K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

a)  Xét tam giác ABD có E và K lần lượt là trung điểm của AD và DB nên EK là đường trung bình tam giác ABD.

Vậy thì EK // AB

Hoàn toàn tương tự ta có ngay KF // DC, hay KF // AB.

Ta thấy, từ một điểm K có hai đoạn thẳng EK và KF cùng song song với AB. Theo tiên đề Oclit ta có E, K, F thẳng hàng.

b) Xét tam giác ABC có F là trung điểm BC, IF // AB nên IF là đường trung bình tam giác ABC.

Vậy thì AI = IC.

c) Xét tam giác ADC có E, I lần lượt là trung điểm của AD và AC nên EI là đường trung bình tam giác ADC.

Vậy thì \(EI=\frac{DC}{2}\)

Tương tự \(KF=\frac{DC}{2}\)

Vậy nên EI = KF.

Từ đó ta có: EI - KI = KF - KI hay EK = IF.

d) Ta có KF = DC/2 = 10 : 2 = 5 (cm)

IF = AB/2 = 6 : 2 = 3 (cm)

Vậy thì KI = KF - IF = 2 (cm) 

9 tháng 9 2018

Bạn Đường Quỳng Giang hướng dẫn làm bài này rồi mà.

8 tháng 9 2018

bạn ơi trả lời các câu hỏi mà mấy bn khác đưa ra xong đúng thì cấc bạn í sẽ k cho thế đấy tăng dần....

8 tháng 9 2018

xin hãy đợi tí mik giải cho

8 tháng 9 2018

bạn lên mạng đánh mấy chữ đầu rồi tìm là ra ý mà hihihi^^

10 tháng 9 2018

A B C N M E F G H I K

a) Kéo dài các tia AN; AE; AM; AF cho chúng cắt đường thẳng BC theo thứ tự tại các điểm G;H;I;K.

Xét \(\Delta\)ABI có: BM  là phân giác ^ABI và BM vuông góc AI (tại M) => \(\Delta\)ABI cân tại B

=> BM đồng thời là đường trung tuyến \(\Delta\)ABI => M là trung điểm AI

C/m tương tự, ta có: N;E;F lần lượt là trung điểm của AG;AH;AK

Xét \(\Delta\)GAH: N là trung điểm AG; E là trung điểm AH => NE là đường trung bình \(\Delta\)GAH

=> NE // GH hay NE // BC (1)

Tương tự: MF // BC (2);  NF // BC (3)

Từ (1); (2) và (3) => 4 điểm M;N;E;F thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

b) Theo câu a ta có: NF là đường trung bình \(\Delta\)AGK => \(NF=\frac{GK}{2}=\frac{BG+BC+CK}{2}\)(*)

Lại có: \(\Delta\)ABG cân ở B; \(\Delta\)ACK cân ở C (câu a) nên BG = AB; CK = AC

Thế vào (*) thì được: \(NF=\frac{AB+BC+AC}{2}\),

KL: ...

10 tháng 9 2018

A B C O H K M D P Q

Lấy P và Q lần lượt là trung điểm của OB và OC.

Xét \(\Delta\)BOC có: D là trung điểm của BC; P là trung điểm của OB => DP là đường trung bình \(\Delta\)BOC

=> DP // OC và DP = 1/2.OC. Mà Q là trung điểm OC => DP // OQ và DP = OQ

Xét tứ giác DPOQ có: DP // OQ; DP = OQ => Tứ giác DPOQ là hình bình hành

=> ^DPO = ^DQO (1)

Xét \(\Delta\)BHO: ^OHB = 900; P là trung điểm OB => HP = OP = BP

Lại có: Tứ giác DPOQ là hbh (cmt) => OP = DQ => HP = DQ

Tương tự ta cũng có: DP = KQ

Mặt khác: HP = BP (cmt) => \(\Delta\)BHP cân tại P

Xét \(\Delta\)BHP cân đỉnh P có góc ngoài là ^HPO => ^HPO = 2.^HBP = 2.^ABO (2)

Tương tự: ^KQO = 2.^ACO (3)

Từ (2) và (3) kết hợp với ^ABO = ^ACO (gt) => ^HPO = ^KQO (4)

Từ (1) và (4) suy ra ^DPO + ^HPO = ^DQO + ^KQO => ^HPD = ^DQK

Xét \(\Delta\)PHD và \(\Delta\)QDK có: DP = KQ; HP = DQ; ^HPD = ^DQK => \(\Delta\)HPD = \(\Delta\)QDK (c.g.c)

=> HD = DK (2 cạnh tương ứng) => \(\Delta\)HDK cân ở D

Xét \(\Delta\)HDK cân đỉnh D có M là trung điểm cạnh HK => DM vuông góc HK (đpcm).

3 tháng 8 2022

@Nguyễn Tất Đạt hình thang nào ạ?

9 tháng 9 2018

A B C D I K E

9 tháng 9 2018

Hình đấy của bài ngay trên. Mình đang vẽ lộn.

GT: AB // CD, AB < CD , I là trung điểm của AB, K là trung điểm của CD , \(\widehat{C}+\widehat{D}=90^0\)

Cần chứng minh \(IK=\frac{CD-AB}{2}\)

Vẽ AD cắt BC tại E. 

\(\Delta ECD\)có: \(\widehat{C}+\widehat{D}=90^{^0}\Rightarrow\widehat{E}=90^0\)

Bạn tự chứng minh \(EI=\frac{1}{2}AB,EK=\frac{1}{2}CD\)

Ta có: \(\widehat{IEA}=\widehat{IAE},\widehat{KED}=\widehat{KDE},\widehat{IAE}=\widehat{KDE}\left(AB//CD\right)\)

\(\Rightarrow\widehat{IEA}=\widehat{KED}\)hay \(\widehat{IEA}=\widehat{KEA}\left(A\in ED\right)\)

Mà I và K nằm trên cùng 1 nửa mặt phẳng bờ chứa tia EA

Nên 3 điểm I, E, K thẳng hàng.

\(\Rightarrow IK=EK-EI=\frac{1}{2}CD-\frac{1}{2}AB=\frac{CD-AB}{2}\)

Chúc bạn học tốt.

8 tháng 9 2018

Gợi ý:

a)  Gọi O là giao của AC và BD

Dễ thấy: MO // EC (đtb)

=>  góc ECH = OBC

góc OBC = OCB

góc ECH = KHC

suy ra:  góc KHC = OCB

=> HK // AC 

b)  Gọi giao của KH và EC là I

Dễ thấy:  MI // AC (đtb)

mà HK// AC

suy ra:H,K, M thẳng hàng