K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

bn lên mạng hoặc vào câu hỏi tương tự nha!

chúc bn hok tốt!

hahaha!

#conmeo#

12 tháng 10 2018

a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.

Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.

b) Chứng minh tương tự, ta có KCBI là hình thoi.

Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)

Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)

Vậy \(\widehat{AKB}=90^o\)

c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)

AB = 2 x 5 = 10 (cm)

Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\) 

Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)

Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)

Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)

11 tháng 10 2018

x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx) => dpcm

18 tháng 10 2018

\(\left(x+y+z\right)^3\ge0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)\ge0\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+z^3\ge0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)         (vì \(x+y=-z\))

\(\Leftrightarrowđpcm\)

10 tháng 10 2018

1+1=2

tk nha

10 tháng 10 2018

trả lời : 

1 + 1 = 2

hok tốt

.....................

9 tháng 10 2018

m​ình lộn câu 2 là 10\(a^2+5b^2+12ab+4â-6b+13>=0\) 0 dấu = xảy ra khi nào

9 tháng 10 2018

Ta có : \(-x^2+2x-4\)

        \(=-\left(x^2-2x+1\right)-3\)

          \(=-\left(x-1\right)^2-3\)\(\le-3\forall x\)

\(\Rightarrow E=\frac{3}{-x^2+2x-4}\)\(\ge\frac{3}{-3}=-1\forall x\)

\(E=-1\Leftrightarrow-\left(x-1\right)^2=0\)

                 \(\Leftrightarrow x=1\)

Vậy \(MinE=-1\Leftrightarrow x=1\)

8 tháng 10 2018

Ta có : 

\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)

\(\left(2\sqrt{2016}\right)^2=8064\)

Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)

Vậy... 

Chúc bạn học tốt ~ 

8 tháng 10 2018

Cảm ơn bn nhiều nhé :)))