tìm x biết
\(5x^3+3x^2+3x-1=-23x^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x^2-3x+5;b=x^2-3x-1\Rightarrow a-b=6.\)
Đặt biểu thức đã cho là A
\(\Rightarrow A=a^2-2ab+b^2=\left(a-b\right)^2=6^2=36\)
=> Biểu thức A không phụ thuộc vào biến x (đpcm)
(x2-3x+5)2-2(x2-3x+5)(x2-3x-1)+(x2-3x-1)2=(x2-3x-5-x2+3x+1)2=(-4)2=42
=> Không phụ thuộc vào x
Chúc bạn học tốt !
\(M=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt y = x2 + 4,5x - 8, ta có:
\(M=4\left(y-2,5x\right)\left(y+2,5x\right)+25x^2\)
\(=4y^2-25x^2+25x^2=4y^2\ge0\forall x\in R\)
Tóm lại, M không có giá trị âm (đpcm)
a) \(M=\left(x-2\right)^3-x\left(x-2\right)\left(x+2\right)+2\left(x^2-6\right)\)
\(=x^3-6x^2+12x-8-x\left(x^2-4\right)+2x^2-12\)
\(=x^3-6x^2+12x-8-x^3+4x+2x^2-12\)
\(=-4x^2+16x-20\)
Vậy \(M=-4x^2+16x-20\) là biểu thức rút gọn
b)
Ta có : \(M=-4x^2+16x-20\)
\(=-4\left(x^2-4x+4\right)-4\)
\(=-4\left(x-2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-4\left(x-2\right)^2-4\le-4\)
Dấu bằng xảy ra khi và chỉ khi
\(-4\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(M_{max}=-4\)tại \(x=2\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Bài 1 có phải là khai triển phép tính đúng ko
Bài 2 là rút gọn đúng ko
Bài 3 là tìm x đúng ko
1) a) (x-2)(x+3)=x2+3x-2x-6=x2+x-6
b) 4x2-(2x-1)2=(2x)2-(2x-1)2=(2x-2x+1)(2x+2x-1)=4x-1
2) a) 4x2-8x+4=4(x2-2x+1)=4(x-1)2
b) x2+4x-4y2+4=(x2+4x+4)-4y2=(x+2)2-(2y)2=(x+2+2y)(x+2-2y)
Mình sửa bài 3a nha
5x(x-3)-x-3 =>5x(x-3)-x+3
3) a) 5x(x-3)-x+3=5x(x-3)-(x-3)=(x-3)(5x-1)=0
=>\(\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
b) 5x2-8x-4=(5x2-10x)+(2x-4)=5x(x-2)+2(x-2)=(x-2)(5x+2)=0
=>\(\orbr{\begin{cases}x+2=0\\5x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{2}{5}\end{cases}}}\)
Chúc bạn học tốt !
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)