K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN

=> A1ˆ=D1ˆA1^=D1^(so le trong )

* Xét △AHB và △DHM có

H1ˆ=H2ˆ(=900)H1^=H2^(=900)

AH =HD (D đối xứng với A qua H )

A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)

=> △AHB = △DHM (g.c.g)

=> BH = MH (2 cạnh t/ứng )

* xét tứ giác ABDM có

AH=HD (d đối xứng với A qua H)

BH=MH (cmt)

=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

mà AD ⊥BM

=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)

b) vì

+DN//AB (gt)

+AB ⊥AC (△ABC vuông tại A)

=> AC ⊥DN (qh từ vuông góc đến song song )

=> DN là đường cao △ ADC(1)

mà AD ⊥CH ( AH ⊥AC)

=> CH là đường cao của △ADC

từ (1) và (2) => M là trực tâm của △ADC

=> AM là đường cao

=> AM ⊥DC (đpcm)

13 tháng 12 2019

Nếu đề đúng: 

x² - 6 + 10 - 2x + y² = 0 

<=> \(x^2-2x+1+y^2+3=0\)

<=> \(\left(x-1\right)^2+y^2+3=0\) vô lí

=> Không tồn tại x, y

Nếu đề sai: 

Sửa đề:

x² - 6y + 10 - 2x + y² = 0 

<=> \(x^2-2x+1+y^2-6y+9=0\)

<=> \(\left(x-1\right)^2+\left(y-3\right)^2=0\) 

Vì \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\) với mọi x, y.

Nên \(\left(x-1\right)^2+\left(y-3\right)^2\ge0\) với mọi x, y

Do đó: \(\left(x-1\right)^2+\left(y-3\right)^2=0\)

<=> x - 1 = 0 và y - 3 = 0

<=> x = 1 và y = 3

Vậy x = 1 và y = 3