CMR:
(x+y+z)^3-x^3-y^3-z^3=xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
\(16^4+y^4=\left[\left(y^2\right)^2+2.y^2.16^2+\left(16^2\right)^2\right]-2.y^2.16^2=\left(y^2+16^2\right)^2-2.y^2.16^2\)
b tự tính tiếp nhé
ý b tương tự. ( gợi ý: thêm bớt hạng tử 16y^4 )
\(y^8+64\)
\(=\left(y^4\right)^2+2\cdot y^4\cdot8+8^2-2\cdot y^4\cdot8\)
\(=\left(y^4+8\right)^2-16y^4\)
\(=\left(y^4+8\right)^2-\left(4y^2\right)^2\)
\(=\left(y^4+8-4y^2\right)\left(y^4+8+4y^2\right)\)
a kudo shinichi làm rồi đó
Ta có:
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Nhận thấy:
\(\left(n-1\right)n\left(n+1\right)\)Là tích của 3 số nhuyên liên tiếp nên:
\(\left(n-1\right)n\left(n+1\right)⋮2;3\)
Mawtk khác: \(\left(2;3\right)=1\)
Do đó:
\(\left(n-1\right)n\left(n+1\right)⋮6\)với mọi số nguyên n
a. Ta sẽ chứng minh H là trực tâm tam giác BDK.
Thật vậy, \(\widehat{HKD}=45^o=\widehat{AED}\)\(\Rightarrow\)HK // AE (vì 2 góc HKD và góc AED nằm ở vị trí đồng vị) \(\Rightarrow\)KH \(\perp\)BD.
Mặt khác, BE \(\perp\)DK.
Từ hai điều trên suy ra H là trực tâm tam giác BDK.
Suy ra HD \(\perp\)BK.
b. Ý tưởng là ta sẽ lập ra các tỉ số có các đoạn DN và BD, KM và BK dựa vào tam giác đồng dạng.
Dễ dàng chứng minh: \(\Delta DNH~\Delta DMB\left(g.g\right)\)\(\Rightarrow\)\(\frac{DN}{DM}=\frac{DH}{DB}\Rightarrow DN.DB=DM.DH\)
Tương tự ta chứng minh được \(KM.KB=KH.KN\)
- Lại có \(DH.DM=DE.DK\)vì \(\Delta DEH~\Delta DMK\left(g.g\right)\)
tương tự, ta có \(KH.KN=KE.DK\left(g.g\right)\)
Vậy \(DN.DB+KM.BK=DM.DH+KH.KN=DE.DK+KE.DK=DK\left(DE+KE\right)=DK.DK\)
ta có: a3 + b3 + c3 - 3abc
= a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2
= (a+b)3 + c3 - 3ab.(c+a+b)
= (a+b+c).[(a+b)2 - (a+b).c + c2 ] - 3ab.(a+b+c)
= (a+b+c).[ a2 + 2ab + b2 - ac - bc + c2 ] - 3ab.(a+b+c)
= (a+b+c).[a2 - 2ab + b2 -ac-bc + c2 - 3ab]
= (a+b+c).(a2 + b2 + c2 - ab -ac-bc)
mà a + b + c = 0
=> a3 + b3 + c3 - 3abc = 0
=> đpcm
Có:
a+b+c=0 => c=-(a+b) (1)
Thay (1) vao a3+b3+c3ta có:
a3+b3+[-(a+b)]3=3ab[-(a+b)]
<=>a3+b3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
D/S la S
mik van con thuc va onl day
..................................!
luongkun!
x^4-5x^2+4=x^4-x^2-(4x^2-4) = x^2(x^2-1)-4(x^2-1)
=(x^2-4)(x^2-1)
=(x-2)(x+2)(x-1)(x+1)
sai đề bạn ơi