Rút gọn và tính.
\(A=\left(2x-y+1\right).\left(2x+y-1\right)\) tại x = 3 và y = 4
\(B=\left(\frac{a+b+c}{a.\left(b+c\right)}\right).\left(\frac{b+c-a}{a.\left(b+c\right)}\right)\)tại a = 2 và b = c = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4\)\
\(=\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\left(x^2+5ax+5a^2\right)^2\)
b) Đặt \(a=x^2+y^2+z^2\); \(b=xy+yz+xz\)
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
a) \left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4(x+a)(x+2a)(x+3a)(x+4a)+a4
=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4=[(x+a)(x+4a)]⋅[(x+2a)(x+3a)]+a4
=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4=(x2+5ax+4a2)(x2+5ax+6a2)+a4
=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4=(x2+5ax+5a2−a2)(x2+5ax+5a2+a2)+a4\
=\left(x^2+5ax+5a^2\right)^2-a^4+a^4=(x2+5ax+5a2)2−a4+a4
=\left(x^2+5ax+5a^2\right)^2=(x2+5ax+5a2)2
b) Đặt a=x^2+y^2+z^2a=x2+y2+z2; b=xy+yz+xzb=xy+yz+xz
\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=a\left(a+2b\right)+b^2=a(a+2b)+b2
=a^2+2ab+b^2=\left(a+b\right)^2=a2+2ab+b2=(a+b)2
=\left(x^2+y^2+z^2+xy+yz+zx\right)^2=(x2+y2+z2+xy+yz+zx)2
câu a ta có : <MAE = 90
suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )
gọi n là giao điểm của EH và CD
vì <MND =90 độ suy ra <NMD +<MPN=90độ
vì cùng phụ nhau với < m suy ra <MEA =<MDN
xét tam giác ACD và tam giác AME :
AD =AE (GT)
<MEA=<MDN (cmt)
<CAD =<MAE =90độ (do AC vuông góc với MB )
SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)
mik chỉ làm đc câu a thôi nha
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
( x2 + 4x )2 - 2( x2 + 4x ) - 15
= x4 + 16x2 - 2x2 - 8x - 15
= x2 + 14x2 - 6x - 15
a+b=6 mà lại tìm x
~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~
^_^