các bạn ơi giải thích cho mình tại sao mình tuần này có 4GP mà lại ko có tên trên BXH ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5^{199}< 5^{200}=25^{100}\)
\(3^{300}=27^{100}>25^{100}\)
\(\Rightarrow3^{300}>5^{199}\)
\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
2) a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)
\(\Rightarrow107^{50}< 73^{75}\)
b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)
\(\left[{}\begin{matrix}2x-\dfrac{2}{3}+\dfrac{1}{2}x=0\\x^2+5=0\end{matrix}\right.\)
\(x^2+5>0\)
\(\Rightarrow x^2+5=0\) ( vô lý )
\(\dfrac{8^2.125.9^2-32.5^3.81}{20^3.3^4-6^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{4^3.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{2^6.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^5.5^3.3^4\left(2-1\right)}{2^6.5^3.3^4\left(1-2^2.3^4.5\right)}\)
\(=\dfrac{2^5.5^3.3^4.1}{2^6.5^3.3^4\left(1-810\right)}\)
\(=\dfrac{1}{2.\left(-809\right)}\)
\(=-\dfrac{1}{1618}\)
Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)
\(\Rightarrow A>B\)
\(\widehat{AMB}=\widehat{AME}+\widehat{EMB}=3\widehat{EMB}+\widehat{EMB}=4\widehat{EMB}=180^o\)
\(\Rightarrow\widehat{EMB}=180^o:4=45^o\)
Ta có
\(\widehat{AME}+\widehat{EMB}+\widehat{MND}=\widehat{AMB}+\widehat{MND}=225^o\)
\(\Rightarrow180^o+\widehat{MND}=225^o\Rightarrow\widehat{MND}=225^o-180^o=45^o\)
Gọi O là giao của AB và CD xét tg OMN có
\(\widehat{MON}=180^o-\left(\widehat{EMB}+\widehat{MND}\right)=180^o-\left(45^o+45^o\right)=90^o\)
\(\Rightarrow AB\perp CD\)
Lời giải:
$M=(x^{10}-24x^9)-(x^9-24x^8)+(x^8-24x^7)-(x^7-24x^6)+(x^6-24x^5)-(x^5-24x^4)+(x^4-24x^3)-(x^3-24x^2)+(x^2-24x)-(x-24)+1$
$=x^9(x-24)-x^8(x-24)+x^7(x-24)-.....+x(x-24)-(x-24)+1$
$=(x-24)(x^9-x^8+x^7-...+x-1)+1$
$=0.(x^9-x^8+....+x-1)+1=1$
Do ∠NIB = 1/5 ∠MIB
⇒ ∠MIB = 5 ∠NIB
Ta có:
∠MIB + ∠NIB = 180⁰ (kề bù)
⇒ 5 ∠NIB + ∠NIB = 180⁰
⇒ 6 ∠NIB = 180⁰
⇒ ∠NIB = 180⁰ : 6
= 30⁰
⇒ ∠MIA = ∠NIB = 30⁰ (đối đỉnh)
bạn chờ một tí đi nhé, có thể máy chưa cập nhật lên thôi
ok