Giúp tôi câu này
Cho M (1;3).Tìm hàm số y=ax+b. biết đồ thị của nó đi qua điểm M cắt 2 trục Ox và Oy tại A và B
Tìm hàm số y=ax+b sao cho S ΔOAB min
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C I
Xét tam giác ABC có \(\widehat{A}=90^o\)\(;\widehat{B}=15^o;AC=1\)
Kẻ đường trung trực của \(BC\)cắt \(AB\)tại \(I\)
Tam giác \(IBC\)là tam giác cân \(\Rightarrow\widehat{B}=\widehat{ICB}=15^o\)
\(\Rightarrow\widehat{ICA}=60^o\Rightarrow\widehat{AIC}=30^o\)nên \(IC=2AC=2;\frac{AC}{AI}=\tan30^o=\frac{1}{\sqrt{3}}\Rightarrow AI=\sqrt{3}\)
Ta có \(AB=AI+BI=AI+IC=\sqrt{3}+2\)
\(\Rightarrow\tan15^o=\frac{AC}{AB}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
\(\hept{\begin{cases}\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=12\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=28\end{cases}}\)
\(\Rightarrow\sqrt{x}+\sqrt{y}=\frac{12}{\sqrt{xy}}\)
\(\Rightarrow\frac{12}{\sqrt{xy}}\left(x+y-\sqrt{xy}\right)=28\)
\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}=\frac{7}{3}\)
\(\Leftrightarrow\frac{x+y}{\sqrt{xy}}=\frac{4}{3}\)
tc \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\frac{x+y}{\sqrt{xy}}\ge2>\frac{4}{3}\)=>pt vô nghiệm
Lời giải:
Đặt \(\left(\sqrt{x},\sqrt{y}\right)=\left(a,b\right)\)
Khi đó hệ phương trình chuyển về: \(\hept{\begin{cases}ab\left(a+b\right)=12\\a^3+b^3=28\end{cases}}\Leftrightarrow\hept{\begin{cases}ab\left(a+b\right)=12\\\left(a+b\right)^3-3ab\left(a+b\right)=28\end{cases}}\)
Lấy 3 lần PT (1) +PT (2) thu được: \(\left(a+b\right)^3=28+36=64\Rightarrow a+b=4\)
Mà \(ab\left(a+b\right)=12\Rightarrow ab=3\)
Khi đó, áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của pt: \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Hay \(\left(a,b\right)=\left(1,3\right)\) và hoán vị hay \(\left(x,y\right)=\left(1,9\right)\) và hoán vị.
ta có: \(5-x^2-2x=y^2+2y+2.\)
\(\Leftrightarrow\left(y+1\right)^2+\left(x+1\right)^2=5\)
mà \(\left(y+1\right)^2\ge0;\left(x+1\right)^2\ge0\) nên
\(\left(y+1\right)^2+\left(x+1\right)^2=0+5=1+4=2+3\)
TH1: \(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(x+1\right)^2=5\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=\sqrt{5}-1\end{cases}}}\)
đến đây tự giải đc rồi nha!
xét xong 3 cặp trên thì kết luận vì x,y có vai trò như nhau nên ta có 6 cặp
Võ Thị Quỳnh Giang sai rồi bạn, bài này mình giải được rồi !
\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{2x+1}=a\\\sqrt[3]{x}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=1\\a^3-2b^3=1\end{cases}}\)
\(\Rightarrow a^3-2\left(1-a\right)^3=1\)
\(\Leftrightarrow a^3-2a^2+2a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-a+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt[3]{2x+1}=1\\\sqrt[3]{x}=0\end{cases}}\)
\(\Leftrightarrow x=0\)
\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)1
Đặt chug ở:\(\hept{\begin{cases}\sqrt[3]{2x+1=a}\\\sqrt[3]{x}=b\end{cases}}\)
=> Ta có:\(\hept{\begin{cases}\sqrt[a+b=1]{a^3-2b^3=1}\\\end{cases}}\)
=>\(a^3-2\left(1-a\right)^3=1\)
=>\(a^3-2a^2+2a-1=0\)
=>\(\left(a-1\right)\left(a^2-a+1=0\right)\)
=>\(\Leftrightarrow a=1;b=0\)
\(\Leftrightarrow x=0\)