có ai biết câu này hun ?????
đang bị mắc kẹt ở câu này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a) �2=�5=�7;�+�+�=562x=5y=7z;x+y+z=56
�2=�5=�7=�+�+�2+5+7=5614=42x=5y=7z=2+5+7x+y+z=1456=4
⇒{�=4.2=8�=4.5=20�=4.7=28⇒⎩⎨⎧x=4.2=8y=4.5=20z=4.7=28
b) �1,1=�1,3=�1,4(1);2�−�=5,51,1x=1,3y=1,4z(1);2x−y=5,5
(1)⇒2�−�1,1.2−1,3=5,50,9(1)⇒1,1.2−1,32x−y=0,95,5
⇒⎩⎨⎧x=1,1.0,95,5=0,96,05y=1,3.0,95,5=0,97,15z=1,11,4.x=1,11,4.0,96,05=0,998,47
d) �2=�3=�5;���=−302x=3x=5z;xyz=−30
�2=�3=�5=���2.3.5=−3030=−12x=3x=5z=2.3.5xyz=30−30=−1
⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5⇒⎩⎨⎧x=2.(−1)=−2y=3.(−1)=−3z=5.(−1)=−5
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
\(...=\dfrac{5}{2}+\dfrac{6}{9}=\dfrac{5}{2}+\dfrac{2}{3}=\dfrac{15}{6}+\dfrac{4}{6}=\dfrac{19}{6}\)
40 chiếc xe đạp ứng với phân số là:
\(1-\dfrac{3}{5}-\left(1-\dfrac{1}{3}\right)\times\dfrac{2}{7}=\dfrac{2}{7}\)(số xe đạp)
Tống số xe đạp là:
\(40:\dfrac{2}{7}=140\)(chiếc xe)
đ/s:..
a) \(...=16.\left(36-37\right)=16.\left(-1\right)=-16\)
b) \(...=9.3+9.50=9.\left(3+50\right)=9.53=477\)
c) \(...=2.\left(\left(5.16-18\right)+36:18\right)=2.\left(70+2\right)=2.72=144\)
d) \(...=5\left(48:8+44\right)=5\left(6+44\right)=5.50=250\)
e) \(...=20-6=14\)
f) \(...=50+13-2=61\)
a) 16 . 36 - 16 . 37
= 16 . (36 - 37)
= 16 . (-1)
= -16
b) 36 : 4 . 3 + 9 . 50
= 9 . 3 + 9 . 50
= 9 . (3 + 50)
= 9 . 53
= 477
c) 2 . (5 . 16 - 18) + 36 : 18 . 2
= 2 . (80 - 18) + 2 . 2
= 2 . 62 + 2 . 2
= 2 . (62 + 2)
= 2 . 64
= 128
xét tam giác ABH và Tam giác ACH có :
AC=AB(tính chất tam giác cân)
AHB=AHC(AH vg góc BC)
AH chung
do đó tam giác ABH=tam giác ACH(ch-gn)
b,tAm giác ABC có AH là đường cao xuất phát từ đỉnh A đồng thời là đường phân giác .Suy ra :góc BAH=CAH^(1) HAY EAH^=CAH^
vì EH //AC nên :CAH^=AHE^(2 góc sltrong)(2)
Từ (1) và(2) suy raEAH^=AHE^
suy ra tam giác AHE cân tại E
\(x+y=a\left(1\right)\)
\(x-y=b\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)
\(\left(1\right)\Rightarrow y=a-x\Rightarrow y=a-\dfrac{a+b}{2}\Rightarrow y=\dfrac{a-b}{2}\)
\(xy=\dfrac{\left(a+b\right)}{2}.\dfrac{\left(a-b\right)}{2}=\dfrac{a^2-b^2}{4}\)
\(x^3-y^3=\left(\dfrac{a+b}{2}\right)^3-\left(\dfrac{a-b}{2}\right)^3=\dfrac{\left(a+b\right)^3}{8}-\dfrac{\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b\right)^3-\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]}{8}\)
\(=\dfrac{2b\left[a^2+b^2+2ab+a^2-b^2+a^2+b^2-2ab\right]}{8}\)
\(=\dfrac{b\left[3a^2+b^2+2ab\right]}{4}\)
\(\left\{{}\begin{matrix}x+y=a\\x-y=b\end{matrix}\right.\) tính \(x^3\) - y3 theo \(a\) và \(b\)
⇒ \(\left\{{}\begin{matrix}x+y+x-y=a+b\\x-y=b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=a+b\\y=x-b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\left(a+b\right):2\\y=\left(a-b\right):2\end{matrix}\right.\) ⇒ \(xy\) = \(\dfrac{a+b}{2}\)\(\times\)\(\dfrac{a-b}{2}\) = \(\dfrac{a^2-b^2}{4}\)
\(x^{3^{ }}\) - y3 = (\(x\) - y)(\(x^2\) + \(x\)y + y2) = \(\left(x-y\right)\)\(\left(\left[x+y\right]^2-xy\right)\) (1)
Thay \(x-y\) = a; \(x\) + y = b và \(xy\) = \(\dfrac{a^2-b^2}{4}\) vào (1) ta có:
\(x^3\) - y3 = b.(a2 - \(\dfrac{a^2-b^2}{4}\)) = b.\(\dfrac{3a^2+b^2}{4}\) = \(\dfrac{3a^2b+b^3}{4}\)
(y-240x220)=2020x33
=>y-52800=66660
=>y=66660+52800=119460
\(\dfrac{118}{210}-\dfrac{32}{7}=-\dfrac{421}{105}\)
Khi thêm số tự nhiên m, phân số trở thành \(\dfrac{43+m}{60+m}\)
Theo đề bài, ta có:
\(\dfrac{m+43}{m+60}=\dfrac{3}{4}\)
\(\Leftrightarrow4\times\left(m+43\right)=3\times\left(m+60\right)\)
\(\Leftrightarrow4m+172=3m+180\\ \Leftrightarrow m=8\)
Đáp số: m = 8
Giải được rùi nè
Bằng 8