K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK : \(x\ge0,x\ne1\)

\(G=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}.\left(x-1\right)}{2\left(\sqrt{x}+1\right)}=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

22 tháng 12 2021

Theo bất đẳng thức Cauuchy ta có :

\(\frac{a}{b}< \left(\frac{a+b}{2}\right)< \frac{1}{4}=-ab>-\frac{1}{4}.\)

Do đó ta được biểu thức :

\(A=16ab+\frac{1}{ab}-15ab>2\sqrt{16ab.\frac{1}{ab}}-15ab>8-15.\frac{1}{4}=\frac{17}{4}\)

Dấu đẳng thức xảy ra chỉ khi \(a=b=\frac{1}{2}\)

Vậy \(A_{min}=\frac{17}{4}\)

22 tháng 12 2021

ta có \(a+b\ge2\sqrt{ab}=>2\sqrt{ab}\le1=>ab\le\frac{1}{4}\)

ta có \(A=16ab+\frac{1}{ab}-15ab\ge2\sqrt{16ab.\frac{1}{ab}}-\frac{15}{4}=\frac{17}{4}\)

Dầu "=" xảy ả khi \(\hept{\begin{cases}a+b=1\\a+b=2\sqrt{ab}\\ab=\frac{1}{4}\end{cases}}=>a=b=\frac{1}{2}\)

22 tháng 12 2021

chịu

thôi

22 tháng 12 2021

Chịu

tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄

22 tháng 12 2021

YESSS

22 tháng 12 2021

YESSS

22 tháng 12 2021

OKE

22 tháng 12 2021

OKE

22 tháng 12 2021

mờ quá ko thấy rõ nên milk ko trả lời đc