Đồ thị hàm số y = 5 - (m - 2008)x nghịch biến trên R khi nào?
A. m = 2008 B. m \(\le2008\) C. m > 2008 D. m < 2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên nửa mặt phẳng bờ AM chứa điểm C vẽ tam giác đều AMN => MA=MN (1)
Vẽ ra ngoài tam giác ABC tam giác đều ACP
Bạn tự đi chứng minh tam giác AMC = tam giác ANP
=> MC=NP (2)
Từ (1) và (2) => MA+MB+MC=BM+MN+NP ≥≥BP (theo tính chất đường gấp khúc)
Dấu = xảy ra ⇔⇔B,M,N,P thẳng hàng
⇔⇔Góc AMB = Góc ANP =120 độ (vì AMN=ANM=60 độ)
⇔⇔AMB=AMC=120 (vì 2 tam giác chứng minh trên bằng nhau nên 2 góc AMC và ANP bằng nhau)
Trả lời
Em học lớp 9 lộn ngược ;-;
Chúc anh học tốt ạ
Answer:
\(\frac{\sqrt{18}-\sqrt{12}}{\sqrt{6}-2}+\frac{4}{\sqrt{3}+1}+\sqrt{\left(3\sqrt{3}-12\right)^2}\)
\(=\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\left|3\sqrt{3}-12\right|\)
\(=\frac{\sqrt{6}}{\sqrt{2}}+\frac{4\left(\sqrt{3}-1\right)}{3-1}+12-3\sqrt{3}\)
\(=\sqrt{3}+2\left(\sqrt{3}-1\right)+12-3\sqrt{3}\)
\(=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}\)
\(=10\)
Để hàm số (1) đồng biến trên \(ℝ\)thì \(m^2-9>0\)\(\Leftrightarrow m^2>9\)\(\Leftrightarrow\orbr{\begin{cases}m>3\\m< -3\end{cases}}\)
Để hàm số (1) nghịch biến trên \(ℝ\)thì \(m^2-9< 0\)\(\Leftrightarrow m^2< 9\)\(\Leftrightarrow-3< m< 3\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
\(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3} +\frac{abc}{b^3}\)
\(=abc.\left(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}\right)\)Mà nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
thì \(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}=\frac{3}{abc}\)\(\Rightarrow P=abc.\frac{3}{abc}=3\)
Ta có :
\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{abc.3}{\left(abc\right)}=3\)
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)
\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)
Ta có:
\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)
\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)
TL :
Đồ thị hàm số y = 5 - (m - 2008)x nghịch biến trên R khi nào?A. m = 2008 B. m ≤2008 C. m > 2008 D. m < 2008
ht
Đồ thị hàm số y = 5 - (m - 2008)x nghịch biến trên R khi nào?A. m = 2008 B. m ≤2008 C. m > 2008 D. m < 2008
ht