cho hình vẽ trên ,biết tam giác ABC có diện tích 45 cm2 và gấp 3 lần diện tích tam giác BCE.
a)tính diện tích tam giác ABE.
b) kéo dài BE về phía E một đoạn EF sao cho EF =1/3BE . Nối A với F kéo dài cắt BC kéo dài tại K . So sánh EK và AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì O thuộc tia đối của tia AB
nên A nằm giữa O và B
=>OB=OA+AB=4+6=10(cm)
M là trung điểm của OA
=>\(OM=MA=\dfrac{OA}{2}=\dfrac{4}{2}=2\left(cm\right)\)
N là trung điểm của OB
=>\(ON=NB=\dfrac{OB}{2}=5\left(cm\right)\)
Vì OM<ON
nên M nằm giữa O và N
=>OM+MN=ON
=>MN+2=5
=>MN=3(cm)
b: \(MN=ON-OM=\dfrac{OB-OA}{2}=\dfrac{BA}{2}\)
=>MN không phụ thuộc vào điểm O
c: Gọi số điểm phải lấy thêm là n(điểm)
Tổng số điểm trên đoạn thẳng AB lúc này là n+2(điểm)
Số tam giác tạo thành là \(C^2_{n+2}\left(tamgiác\right)\)
Theo đề, ta có: \(C^2_{n+2}=465\)
=>\(\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=465\)
=>(n+1)(n+2)=930
=>\(n^2+3n-928=0\)
=>\(\left[{}\begin{matrix}n=29\left(nhận\right)\\n=-32\left(loại\right)\end{matrix}\right.\)
Vậy: Số điểm phải lấy thêm là 29 điểm
Số số hạng trong dãy số 100;98;...;2 là:
\(\dfrac{100-2}{2}+1=\dfrac{98}{2}+1=50\left(số\right)\)
Tổng của dãy số 100;98;...;2 là:
\(\left(100+2\right)\cdot\dfrac{50}{2}=102\cdot25=2550\)
100+98+...+2+97-95-93
=2550+2-93
=2552-93
=2459
Chu vi của miếng bìa đó là:
\(0,55\times2\times3,14=3,454\left(dm\right)\)
Đáp số: 3,454 dm.
\(#NqHahh\)
\(\left(\dfrac{7}{6}+\dfrac{5}{12}\right)\times12\)
\(=\dfrac{7}{6}\times12+\dfrac{5}{12}\times12\)
\(=14+5\)
\(=19\)
a: \(-1,2+\dfrac{2}{3}+x=5\)
=>\(x=5+1,2-\dfrac{2}{3}=6,2-\dfrac{2}{3}\)
=>\(x=\dfrac{31}{5}-\dfrac{2}{3}=\dfrac{93}{15}-\dfrac{10}{15}=\dfrac{83}{15}\)
b: \(2\dfrac{4}{7}-3x=\dfrac{-4}{5}+\dfrac{2}{3}\)
=>\(\dfrac{18}{7}-3x=\dfrac{-12}{15}+\dfrac{10}{15}=\dfrac{-2}{15}\)
=>\(3x=\dfrac{18}{7}+\dfrac{2}{15}=\dfrac{270}{105}+\dfrac{14}{105}=\dfrac{284}{105}\)
=>\(x=\dfrac{284}{315}\)
c: \(\dfrac{1}{6}-\dfrac{3}{8}+1,75=3\dfrac{4}{3}-x\)
=>\(\dfrac{13}{3}-x=\dfrac{4}{24}-\dfrac{9}{24}+\dfrac{42}{24}=\dfrac{37}{24}\)
=>\(x=\dfrac{13}{3}-\dfrac{37}{24}=\dfrac{108}{24}-\dfrac{37}{24}=\dfrac{71}{24}\)
d: \(\dfrac{1}{6}-\dfrac{4}{9}+0,125=2\dfrac{4}{3}-2x\)
=>\(\dfrac{10}{3}-2x=\dfrac{-11}{72}\)
=>\(2x=\dfrac{10}{3}+\dfrac{11}{72}=\dfrac{240}{72}+\dfrac{11}{72}=\dfrac{251}{72}\)
=>\(x=\dfrac{251}{144}\)
e: \(2\dfrac{2}{3}-4x=\dfrac{-7}{5}+\dfrac{2}{3}\)
=>\(2+\dfrac{2}{3}-4x=\dfrac{-7}{5}+\dfrac{2}{3}\)
=>\(2-4x=-\dfrac{7}{5}\)
=>\(4x=2+\dfrac{7}{5}=\dfrac{17}{5}\)
=>\(x=\dfrac{17}{20}\)
f: \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)
=>\(x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}=\dfrac{3}{6}-\dfrac{5}{6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
=>\(x=-\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{2}{3}\)
g: \(\left(\dfrac{3}{5}-\dfrac{4}{3}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{9}{7}\)
=>\(\dfrac{-11}{15}+\dfrac{5}{8}-x=\dfrac{9}{7}\)
=>\(\dfrac{-13}{120}-x=\dfrac{9}{7}\)
=>\(x=-\dfrac{13}{120}-\dfrac{9}{7}=\dfrac{-1171}{840}\)
a, \(-1,2+\dfrac{2}{3}+x=5\Leftrightarrow x=5+1,2-\dfrac{2}{3}=\dfrac{83}{15}\)
b, \(2\dfrac{4}{7}-3x=-\dfrac{4}{5}+\dfrac{2}{3}\Leftrightarrow\dfrac{18}{7}-3x=-\dfrac{2}{15}\Leftrightarrow3x=\dfrac{284}{105}\Leftrightarrow x=\dfrac{284}{315}\)
c, \(\dfrac{1}{6}-\dfrac{3}{8}+1,75=3\dfrac{4}{3}-x\Leftrightarrow-x+\dfrac{13}{3}=\dfrac{37}{24}\Leftrightarrow x=\dfrac{13}{3}-\dfrac{37}{24}=\dfrac{67}{24}\)
d, \(\dfrac{1}{6}-\dfrac{4}{9}+0,125=2\dfrac{4}{3}-2x\Leftrightarrow-2x+\dfrac{10}{3}=-\dfrac{-11}{72}\Leftrightarrow2x=\dfrac{251}{72}\Leftrightarrow x=\dfrac{251}{144}\)
e, \(2\dfrac{2}{3}-4x=-\dfrac{7}{5}+\dfrac{2}{7}\Leftrightarrow\dfrac{8}{3}-4x=-\dfrac{39}{35}\Leftrightarrow4x=\dfrac{397}{105}\Leftrightarrow x=\dfrac{397}{420}\)
f, \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
g, \(\left(\dfrac{3}{5}-\dfrac{4}{3}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{9}{7}\Leftrightarrow\dfrac{-11}{15}+\dfrac{5}{8}-x=\dfrac{9}{7}\Leftrightarrow\left(-\dfrac{13}{120}\right)-x=\dfrac{9}{7}\Leftrightarrow x=-\dfrac{1171}{840}\)
Bài 6: Chiều cao của hình thang là:
497,25:(56+29)=497,25:85=5,85(m)
Bài 5:
40p=2/3 giờ
Độ dài quãng đường AB là:
\(\dfrac{2}{3}:\left(\dfrac{1}{30}-\dfrac{1}{40}\right)=\dfrac{2}{3}:\dfrac{1}{120}=\dfrac{2}{3}\cdot120=80\left(km\right)\)
Bài 1:
76% của 2 giờ là:
2x76%=1,52(giờ)
Bài 1:
76% của 2 giờ là:
2x76%=1,52(giờ)
Bài 2:
1 giờ = 60 phút = 3600 giây
=> Em đi được 5,652km trong 3600 giây
=> Em đi Quanh hồ trong 20 giây chính là chu vi cái ao đó
=> Chu vi cái ao đó là:
\(3600\div20\times5,652=\text{1017,36}\left(km\right)\)
=> Đường kính của cái ao đó là:
\(1017,36\div3,14=324\left(km\right)\)
=> Bán kính của cái ao đó là:
\(324\div2=162\left(km\right)\)
Đ/S:...
Bài 5:
40p=2/3 giờ
Độ dài quãng đường AB là:
\(\dfrac{2}{3}\div\left(\dfrac{1}{30}-\dfrac{1}{40}\right)=\dfrac{2}{3}\div\dfrac{1}{120}=80\left(km\right)\)
Bài 6: Chiều cao của hình thang là:
497,25:(56+29)=497,25:85=5,85(m)
\(\left(\dfrac{7}{6}+\dfrac{5}{12}\right)\times12\)
\(=\left(\dfrac{14}{12}+\dfrac{5}{12}\right)\times12\)
\(=\dfrac{19}{12}\times12=19\)