Cho 5 đường thẳng đôi một cắt nhau.CMR trong số các góc tạo thành của 2 đường thẳng trong 5 đường thẳng đã cho,luôn tồn tại một góc có số đo không vượt quá 36 độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị vào http://s1.timtailieu.vn/2cc751c17fa866ad498152b45b1493f7/swf/2014/03/23/nguyen_li_dirichle.dgrc99cYGv.swf bài tập chon lọc 5 trang 11 nhé
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
900+100=1000
700+x=1000
x= 1000-700
x= 300
ai k mình mình k lại
\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1
Suy ra tích này chia hết cho 3x4x5 = 60 (1)
Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)
Từ (1) và (2) suy ra đpcm
Cho hình thoi ABCD có cạnh là a. Gọi r1 và r2 laf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.
cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)
\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)
nghiệm nguyên
với x=0 <=> 1+3=4=> y=+-2
x=1 +> 2+3=5=y^2 loại
với x>=2
2^x+3=8k+1
2^x=2(4k-1)
[2^(x-1)]=4k-1 vô nghiệm nguyên
KL nghiẹm
với x=0
y=+-2
có ai kiếm cho tui cái đề thi hsg lp 9 ko????? Kiếm đc thì gửi qua fb nhé. tên fb là Sigme Gilgadian
Gọi n, a là số cạnh của đa giác và độ dài mỗi cạnh của đa giác đó thì
\(\frac{n\left(n-3\right)}{2}=90\)
\(\Rightarrow n=15\)
Ta có \(\frac{S_1}{S_2}=\frac{r^2\times3,14}{R^2\times3,14}\)
\(=\frac{\left(\frac{a}{2\tan\frac{\pi}{n}}\right)^2\times3,14}{\left(\frac{a}{2\sin\frac{\pi}{n}}\right)^2\times3,14}=\frac{\sin^2\left(12\right)}{\tan^2\left(12\right)}=0,957\)
Ta chọn điểm O bất kì nằm trong mặt phẳng chứa 5 đường thẳng ấy. Qua O ta dựng các đường thẳng song song với các đường thẳng đã cho , khi đó có 10 góc đôi một đối đỉnh qua O . Vậy sẽ có ít nhất một góc không vượt quá \(\frac{180^o}{5}=36^o\)
'
'
'
'
'
'