Giải phương trình
\(\sqrt{1-\sqrt{x}}+\sqrt{4x+3}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Năm 1796, nhà toán học Carl Friedrich Gauss đã tìm được cách vẽ đa giác đều có 17 cạnh bằng thước thẳng và compa, bằng cách xem các đỉnh của đa giác trên vòng tròn như là nghiệm của phương trình số phức zn – 1 = 0.
\(\hept{\begin{cases}8x+7y=16\\8x-3y=-24\end{cases}}\Leftrightarrow\hept{\begin{cases}8x+7y=16\\3y-8x=24\end{cases}}\Leftrightarrow\hept{\begin{cases}3y-8x=24\\10y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}3.4-8x=24\\y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=4\end{cases}}\)
Vậy hệ đã cho có nghiệm duy nhất \(\left(-\frac{3}{2};4\right)\)
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn
??????????????????????????????????????????????????????????????????????????????????
Điều kiện : \(-4< x< 1\)
\(\sqrt{1-x}=3-\sqrt{4+x}\)
\(1-x=9+4+x-6\sqrt{4+x}\)
\(0=12+2x-6\sqrt{4+x}\)
\(6+x=3\sqrt{4+x}\)
\(36+12x+x^2=9\left(4+x\right)\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\hept{\begin{cases}x=0\left(tm\right)\\x=-3\left(tm\right)\end{cases}}\)
Vậy \(S=\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
em lop 3