So sánh -25/20 và 20/25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+1997x^2+1996x+1997\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(1997x^2+1997x+1997\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
Lời giải:
Đặt $M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}$
Với $a,b,c$ nguyên dương thì:
$M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}> \frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}=\frac{a+b+c}{a+b+c}=1(*)$
Lại có:
Xét hiệu $\frac{b}{a+b}-\frac{b+c}{a+b+c}=\frac{b(a+b+c)-(a+b)(b+c)}{(a+b)(a+b+c)}$
$=\frac{-b^2}{(a+b)(a+b+c)}<0$ với mọi $a,b,c$ nguyên dương.
$\Rightarrow \frac{b}{a+b}< \frac{b+c}{a+b+c}$
Tương tự:
$\frac{c}{b+c}< \frac{c+a}{b+c+a}$
$\frac{a}{c+a}< \frac{a+b}{c+a+b}$
$\Rightarrow M< \frac{b+c}{a+b+c}+\frac{c+a}{b+c+a}+\frac{a+b}{c+a+b}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$
Do đó $M$ không phải số nguyên.
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a\(\): \(K=1-5+5^2-5^3+...+5^{100}\)
=>\(5K=5-5^2+5^3-5^4+...+5^{101}\)
=>\(5K+K=5-5^2+5^3-5^4+...+5^{101}+1-5+5^2-5^3+...+5^{100}\)
=>\(6K=5^{101}+1\)
=>\(K=\dfrac{5^{101}+1}{6}\)
b: \(5^{101}\) chia 6 sẽ dư 5 bởi vì \(5^{101}+1⋮6\) và 1+5=6
Vậy giá trị của PP là 22 trong trường hợp có nghiệm a=1a = 1, b=1b = 1, c=0c = 0.
\(\dfrac{x}{7}+\dfrac{2}{y}=\dfrac{-1}{15}\)
=>\(\dfrac{xy+14}{7y}=\dfrac{-1}{15}\)
=>\(15\left(xy+14\right)+7y=0\)
=>\(15xy+7y=-210\)
=>y(15x+7)=-210
mà 15x+7 chia 15 dư 7
nên \(\left(15x+7;y\right)\in\left\{\left(7;-30\right)\right\}\)
=>\(\left(x;y\right)\in\left(0;-30\right)\)
a) \(x-\dfrac{3}{5}=\dfrac{2}{7}\)
\(\Rightarrow x=\dfrac{2}{7}+\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{10}{35}+\dfrac{21}{35}\)
\(\Rightarrow x=\dfrac{31}{35}\)
b) \(x+\dfrac{20}{11\cdot13}+\dfrac{20}{13\cdot15}+...+\dfrac{20}{53\cdot55}=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)
\(\Rightarrow x+\dfrac{40}{55}=\dfrac{3}{11}\)
\(\Rightarrow x=\dfrac{3}{11}-\dfrac{40}{55}\)
\(\Rightarrow x=\dfrac{-25}{55}=\dfrac{-5}{11}\)
a)
\(\dfrac{4}{5}-\left(\dfrac{-2}{3}\right)-\dfrac{1}{10}-\dfrac{2}{3}\\ =\dfrac{4}{5}+\dfrac{2}{3}-\dfrac{1}{10}-\dfrac{2}{3}\\ =\left(\dfrac{4}{5}-\dfrac{1}{10}\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)\\ =\dfrac{7}{10}+0\\ =\dfrac{7}{10}\)
b)
\(\dfrac{1}{3}-\dfrac{-1}{2}+\dfrac{1}{13}-\dfrac{5}{6}\\ =\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\dfrac{1}{13}-\dfrac{5}{6}\\ =\dfrac{5}{6}+\dfrac{1}{13}-\dfrac{5}{6}\\ =\dfrac{1}{13}\)
c)
\(\dfrac{-5}{12}-\left(\dfrac{-5}{6}-\dfrac{5}{12}\right)\\ =\dfrac{-5}{12}+\dfrac{5}{6}+\dfrac{5}{12}\\ =\left(-\dfrac{5}{12}+\dfrac{5}{12}\right)+\dfrac{5}{6}\\ =\dfrac{5}{6}\)
Ta có :
\(\dfrac{1300}{1500}=\dfrac{13}{15}=1-\dfrac{2}{15}\)
\(\dfrac{1333}{1555}=1-\dfrac{222}{1555}\)
Vì \(\dfrac{222}{1555}>\dfrac{2}{15}\)
\(\Rightarrow1-\dfrac{222}{1555}< 1-\dfrac{2}{15}\)
\(\dfrac{\Rightarrow1333}{1555}< \dfrac{1300}{1500}\)
\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2008}-1\right).\left(\dfrac{1}{2009}-1\right)\)
\(=-\dfrac{1}{2}.-\dfrac{2}{3}.-\dfrac{3}{4}...-\dfrac{2007}{2008}.-\dfrac{2008}{2009}\)
\(=-\left(\dfrac{1.2.3...2007.2008}{2.3.4...2008.2009}\right)\)
\(=-\dfrac{1}{2009}\)
\(-\dfrac{25}{20}>0\)
\(\dfrac{20}{25}>0\)
\(\Rightarrow-\dfrac{25}{20}< \dfrac{20}{25}\)