K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

x2+2y2+2xy-y=3(y-1)

<=> x2+2xy+y2+y2-y=3(y-1)

<=> (x+y)2=3(y-1)-y(y-1)

<=> (x+y)2=(y-1)(3-y)

Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y

=> Để phương trình có nghiệm thì Vế phải \(\ge\)0

<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3

Y nguyên => y1=1; y2=2; y3=3

+/ y=1 => x=-y=-1

+/ y=2 => x=-1

+/ y=3 => x=-y=-3

Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)

1 tháng 12 2017

Điều kiện: x\(\ge\)0

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}.\)

Do \(\sqrt{x}+2\ge2\)Với mọi x\(\ge\)0

Để A min khi \(\frac{3}{\sqrt{x}+2}\)đạt GTLN

=> \(\sqrt{x}+2\)đạt GTNN => \(\sqrt{x}+2=2\)=> x=0

=> \(A_{min}=1-\frac{3}{2}=-\frac{1}{2}\)Đạt được khi x=0

1 tháng 12 2017

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}=0\)

\(\Leftrightarrow3t^2-3+2t=0\left(t=\sqrt{x^2+7x+7}\ge0\right)\)

\(\Leftrightarrow t=\frac{-2\pm\sqrt{40}}{6}\)\(\Rightarrow\sqrt{x^2+7x+7}=\frac{-2\pm\sqrt{40}}{6}\)

Giải tiếp nhé, nghiệm xấu thật

1 tháng 12 2017

\(3^2+21x+18+2\sqrt{x^2+7x+7}=0\)

\(\Rightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}\)

\(\Rightarrow3\left(x^2+7x+7\right)+2\sqrt{x^2+7x+7}-5=0\)

Đặt: \(a=\sqrt{x^2+7x+7}\left(a\ge0\right)\)ta được PT:

\(3a^2+2a-5=0\)

\(\Rightarrow\left(a-1\right)\left(3a+5\right)=0\)

\(\Rightarrow a=1\)(nhận)

     \(a=-\frac{5}{3}\)(loại)

\(a=1\Rightarrow\sqrt{x^2+7x+7}=1\Rightarrow x^2+7x+7=1\Rightarrow x^2+7x+6=0\)

\(\Rightarrow\left(x+6\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)

Vậy: \(x=-1;x=-6\)

1 tháng 12 2017

Với 2 số x,y > 0 Theo Cauchy ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{\left(x+y\right)^2}{4}\ge xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}^{\left(1\right)}\)

\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Áp dụng (1) ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\cdot\frac{4}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)

\(\Rightarrow3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

Đẳng thức xảy ra khi a=b và (a+b)=c hay a=b=1,5 và c=3.